{"title":"Early Prediction of the Remaining Useful Life of Lithium-Ion Cells Using Ensemble and Non-Ensemble Algorithms","authors":"Femilda Josephin J.S., Ankit Sonthalia, Thiyagarajan Subramanian, Fethi Aloui, Dhowmya Bhatt, Edwin Geo Varuvel","doi":"10.1002/est2.70133","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Lithium-ion cells have become an important part of our daily lives. They are used to power mobile phones, laptops and more recently electric vehicles (both two- and four-wheelers). The chemical behavior of the cells is rather complex and non-linear. For reliable and sustainable use of the cells for practical applications, it is imperative to predict the precise pace at which their capacity will degrade. More importantly, the lifetime of the cells must be predicted at an early stage, which would accelerate development and design optimization of the cells. However, most of the existing methods cannot predict the lifetime at an early stage, since there is a weak correlation between the cell capacity and lifetime. In this study for accurate forecasting of the battery lifetime, the patterns of the parameters such as cell current, voltage, temperature, charging time, internal resistance, and capacity were examined during charging and discharging cycle of the cell. Twelve manually crafted features were prepared from these parameters. The dataset for the features was created using the raw data of the first 100 cycles of 124 cells. Six ensemble and non-ensemble machine learning algorithms, namely, multiple linear regression (MLR), decision tree, support vector machine (SVM), gradient boosting machine (GBM), light gradient boosting machine (LGBM), and extreme gradient boosting (XGBoost), were trained with the features for predicting the life-cycle of the cells. The <i>R</i><sup>2</sup> and root mean squared error (RMSE) values of MLR, decision tree, SVM, GBM, LGBM, and XGBoost were found to be 0.72 and 201, 0.83 and 155, 0.85 and 146, 0.92 and 100, 0.9 and 112, and 0.94 and 95, respectively. The prediction accuracy of lithium-ion cell life-time was found to be the best with the XGBoost algorithm. This shows that only first 100 cycles are required foraccurately predicting the number of cycles the lithium-ion cell can work for. Lastly, the results of the study were compared with the available studies in the literature. Three studies were chosen, and the RMSE of the method proposed in this study was found to be higher than the three studies by 43, 17, and 20. Therefore, the proposed method is a suitable option for predicting the lifetime of lithium-ion cells during the early stages of its development.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion cells have become an important part of our daily lives. They are used to power mobile phones, laptops and more recently electric vehicles (both two- and four-wheelers). The chemical behavior of the cells is rather complex and non-linear. For reliable and sustainable use of the cells for practical applications, it is imperative to predict the precise pace at which their capacity will degrade. More importantly, the lifetime of the cells must be predicted at an early stage, which would accelerate development and design optimization of the cells. However, most of the existing methods cannot predict the lifetime at an early stage, since there is a weak correlation between the cell capacity and lifetime. In this study for accurate forecasting of the battery lifetime, the patterns of the parameters such as cell current, voltage, temperature, charging time, internal resistance, and capacity were examined during charging and discharging cycle of the cell. Twelve manually crafted features were prepared from these parameters. The dataset for the features was created using the raw data of the first 100 cycles of 124 cells. Six ensemble and non-ensemble machine learning algorithms, namely, multiple linear regression (MLR), decision tree, support vector machine (SVM), gradient boosting machine (GBM), light gradient boosting machine (LGBM), and extreme gradient boosting (XGBoost), were trained with the features for predicting the life-cycle of the cells. The R2 and root mean squared error (RMSE) values of MLR, decision tree, SVM, GBM, LGBM, and XGBoost were found to be 0.72 and 201, 0.83 and 155, 0.85 and 146, 0.92 and 100, 0.9 and 112, and 0.94 and 95, respectively. The prediction accuracy of lithium-ion cell life-time was found to be the best with the XGBoost algorithm. This shows that only first 100 cycles are required foraccurately predicting the number of cycles the lithium-ion cell can work for. Lastly, the results of the study were compared with the available studies in the literature. Three studies were chosen, and the RMSE of the method proposed in this study was found to be higher than the three studies by 43, 17, and 20. Therefore, the proposed method is a suitable option for predicting the lifetime of lithium-ion cells during the early stages of its development.