Dissipative Gradient Nonlinearities Prevent δ $\delta$ -Formations in Local and Nonlocal Attraction–Repulsion Chemotaxis Models

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Tongxing Li, Daniel Acosta-Soba, Alessandro Columbu, Giuseppe Viglialoro
{"title":"Dissipative Gradient Nonlinearities Prevent \n \n δ\n $\\delta$\n -Formations in Local and Nonlocal Attraction–Repulsion Chemotaxis Models","authors":"Tongxing Li,&nbsp;Daniel Acosta-Soba,&nbsp;Alessandro Columbu,&nbsp;Giuseppe Viglialoro","doi":"10.1111/sapm.70018","DOIUrl":null,"url":null,"abstract":"<p>We study a class of zero-flux attraction–repulsion chemotaxis models, characterized by nonlinearities laws for the diffusion of the cell density <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math>, the chemosensitivities and the production rates of the chemoattractant <span></span><math>\n <semantics>\n <mi>v</mi>\n <annotation>$v$</annotation>\n </semantics></math> and the chemorepellent <span></span><math>\n <semantics>\n <mi>w</mi>\n <annotation>$w$</annotation>\n </semantics></math>. In addition, a source involving also the gradient of <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math> is incorporated. Our overall study touches on different aspects: we address questions connected to local well-posedness, we derive sufficient conditions to ensure boundedness of solutions, and finally, we develop numerical simulations giving insights into the evolution of the system.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70018","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study a class of zero-flux attraction–repulsion chemotaxis models, characterized by nonlinearities laws for the diffusion of the cell density u $u$ , the chemosensitivities and the production rates of the chemoattractant v $v$ and the chemorepellent w $w$ . In addition, a source involving also the gradient of u $u$ is incorporated. Our overall study touches on different aspects: we address questions connected to local well-posedness, we derive sufficient conditions to ensure boundedness of solutions, and finally, we develop numerical simulations giving insights into the evolution of the system.

Abstract Image

耗散梯度非线性阻止局部和非局部吸引-排斥趋化模型中的δ $\ δ $ -形成
研究了一类零通量吸引-排斥趋化模型,该模型具有细胞密度u$ u$扩散、趋化剂v$ v$和趋化剂w$ w$的化学敏感性和产率的非线性规律。此外,还纳入了一个同样涉及u$ u$梯度的源。我们的整体研究涉及不同的方面:我们解决了与局部适定性相关的问题,我们推导了确保解的有界性的充分条件,最后,我们开发了数值模拟,从而深入了解系统的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信