Hypoxic Secretome and Exosomes Derived From Human Glioblastoma Cells (U87MG) Promote Protumorigenic Phenotype of Microglia in Vitro

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sangati Pancholi, Ritvi Shah, Utsav Bose, Ankit Yadav, Karthik Murukan, Prakash Pillai
{"title":"Hypoxic Secretome and Exosomes Derived From Human Glioblastoma Cells (U87MG) Promote Protumorigenic Phenotype of Microglia in Vitro","authors":"Sangati Pancholi,&nbsp;Ritvi Shah,&nbsp;Utsav Bose,&nbsp;Ankit Yadav,&nbsp;Karthik Murukan,&nbsp;Prakash Pillai","doi":"10.1002/jcb.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glioblastoma multiforme (GBM), a highly heterogeneous CNS tumor known for its highest incidence rates and poor prognosis has shown limited success in the therapies due to hypoxia—driving immune-suppression in the tumor microenvironment (TME). Emerging evidence highlights the involvement of tumor cell-derived exosomes in tumor-associated microglia polarization via transfer of exosomal onco-proteins and miRNAs. Although the regulatory role of long noncoding RNAs (lncRNAs) in immune signaling are known, its mechanism in microglial polarization via exosomes in GBM still remains poorly understood. In our study, we found that in comparison to the normoxic GBM-derived exosomes lncRNA H19 was significantly upregulated in hypoxic GBM-derived exosomes. Hypoxic GBM-derived exosomes and secretome (conditioned media) caused the reduction in the % phagocytosis of microglia as compared with the control group. Moreover, GBM secretome caused increase in the M2-specific genes (IL10, STAT-3, CD163, CD206) in microglia indicating its polarization to the protumorigenic (M2) phenotype. LncRNA H19 knocked down GBM-secretome treatment in microglia further reduced the STAT-3 expression indicating H19 mediated signaling. Overall, our results suggest the involvement of hypoxic exosomes and lncRNA H19 in microglial polarization and H19 as a potential target.</p>\n </div>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":"126 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcb.70002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma multiforme (GBM), a highly heterogeneous CNS tumor known for its highest incidence rates and poor prognosis has shown limited success in the therapies due to hypoxia—driving immune-suppression in the tumor microenvironment (TME). Emerging evidence highlights the involvement of tumor cell-derived exosomes in tumor-associated microglia polarization via transfer of exosomal onco-proteins and miRNAs. Although the regulatory role of long noncoding RNAs (lncRNAs) in immune signaling are known, its mechanism in microglial polarization via exosomes in GBM still remains poorly understood. In our study, we found that in comparison to the normoxic GBM-derived exosomes lncRNA H19 was significantly upregulated in hypoxic GBM-derived exosomes. Hypoxic GBM-derived exosomes and secretome (conditioned media) caused the reduction in the % phagocytosis of microglia as compared with the control group. Moreover, GBM secretome caused increase in the M2-specific genes (IL10, STAT-3, CD163, CD206) in microglia indicating its polarization to the protumorigenic (M2) phenotype. LncRNA H19 knocked down GBM-secretome treatment in microglia further reduced the STAT-3 expression indicating H19 mediated signaling. Overall, our results suggest the involvement of hypoxic exosomes and lncRNA H19 in microglial polarization and H19 as a potential target.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cellular biochemistry
Journal of cellular biochemistry 生物-生化与分子生物学
CiteScore
9.90
自引率
0.00%
发文量
164
审稿时长
1 months
期刊介绍: The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信