The Friction Behavior of Rock-Ice Avalanches in Relation to Rock-Ice Segregation: Insights From Flume Physical Experiments

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Xuanmei Fan, Zetao Feng, Tao Ni, Yu Deng, Jing Zhang, Lanxin Dai
{"title":"The Friction Behavior of Rock-Ice Avalanches in Relation to Rock-Ice Segregation: Insights From Flume Physical Experiments","authors":"Xuanmei Fan,&nbsp;Zetao Feng,&nbsp;Tao Ni,&nbsp;Yu Deng,&nbsp;Jing Zhang,&nbsp;Lanxin Dai","doi":"10.1029/2024JF007904","DOIUrl":null,"url":null,"abstract":"<p>Rock-ice avalanches in cold-high mountainous regions exhibit remarkably high mobility, frequently resulting in catastrophic consequences. However, the systematic influence of ice on the mobility of rock-ice avalanches remains poorly understood. This paper addresses this gap by conducting a comprehensive flume experiment in a temperature-controlled room at −10°C, simulating rock-ice avalanches and considering variations in rock-ice particle size ratios and ice contents. Overall mobility and segregation patterns are quantified by analyzing deposition characteristics, while high-speed cameras capture velocity and segregation features during motion. Our investigation reveals a notable rock-ice segregation phenomenon that significantly impacts the mobility of the mixture. Building on insights from prior numerical experiments conducted under nearly-no-base-slip conditions (Feng et al., 2023, https://doi.org/10.1029/2023jf007115), our results underscore that the particle segregation simultaneously influences both internal (bulk) and basal frictions, thereby producing different nonlinear impacts on the mobility of the rock-ice flow. Additionally, an empirical formula is proposed to describe the evolution of the friction coefficient in cases with different rock-ice particle size ratios and ice contents. These findings have significant implications for predicting runout and assessing the risk of rock-ice avalanches.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007904","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rock-ice avalanches in cold-high mountainous regions exhibit remarkably high mobility, frequently resulting in catastrophic consequences. However, the systematic influence of ice on the mobility of rock-ice avalanches remains poorly understood. This paper addresses this gap by conducting a comprehensive flume experiment in a temperature-controlled room at −10°C, simulating rock-ice avalanches and considering variations in rock-ice particle size ratios and ice contents. Overall mobility and segregation patterns are quantified by analyzing deposition characteristics, while high-speed cameras capture velocity and segregation features during motion. Our investigation reveals a notable rock-ice segregation phenomenon that significantly impacts the mobility of the mixture. Building on insights from prior numerical experiments conducted under nearly-no-base-slip conditions (Feng et al., 2023, https://doi.org/10.1029/2023jf007115), our results underscore that the particle segregation simultaneously influences both internal (bulk) and basal frictions, thereby producing different nonlinear impacts on the mobility of the rock-ice flow. Additionally, an empirical formula is proposed to describe the evolution of the friction coefficient in cases with different rock-ice particle size ratios and ice contents. These findings have significant implications for predicting runout and assessing the risk of rock-ice avalanches.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信