Solar Semidiurnal Variations in the Thermosphere and Ionosphere Forced From Above and From Below

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Jeffrey M. Forbes, Xiaoli Zhang, Chihoko Cullens, Astrid Maute
{"title":"Solar Semidiurnal Variations in the Thermosphere and Ionosphere Forced From Above and From Below","authors":"Jeffrey M. Forbes,&nbsp;Xiaoli Zhang,&nbsp;Chihoko Cullens,&nbsp;Astrid Maute","doi":"10.1029/2024JA033353","DOIUrl":null,"url":null,"abstract":"<p>The nature and origins of solar-synchronous semidiurnal variations (SW2) in the thermosphere and ionosphere are explored through analysis of Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) simulations that include and exclude forcing by tides at its 97-km lower boundary derived from Ionospheric Connection (ICON) explorer data. SW2 consists of two components, one excited in-situ (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{i}$</annotation>\n </semantics></math>) and one due to vertical propagation from below the thermosphere (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mi>b</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{b}$</annotation>\n </semantics></math>). <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{i}$</annotation>\n </semantics></math> in turn consists of a part forced by heating due to absorption of solar radiation (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>i</mi>\n <mi>s</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{is}$</annotation>\n </semantics></math>) and a part of “geomagnetic” origin (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>i</mi>\n <mi>g</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{ig}$</annotation>\n </semantics></math>) arising from magnetospheric coupling at high latitudes. At 300 km all three components achieve wind and temperature amplitudes of order 25 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>ms</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{ms}}^{-1}$</annotation>\n </semantics></math> and 15–20 K within specific geographic domains and levels of solar activity. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>i</mi>\n <mi>s</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{is}$</annotation>\n </semantics></math> exhibits upward propagation from the lower thermosphere much like the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>1</mn>\n <mrow>\n <mi>s</mi>\n <mi>t</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${1}^{st}$</annotation>\n </semantics></math> symmetric component of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mi>b</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{b}$</annotation>\n </semantics></math>, refraction toward the winter hemisphere by mean winds, modulation by the <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math> 27-day solar rotation rate, and is estimated to exceed <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mi>b</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{b}$</annotation>\n </semantics></math> in general importance for F10.7 <span></span><math>\n <semantics>\n <mrow>\n <mo>&gt;</mo>\n </mrow>\n <annotation> ${ &gt;} $</annotation>\n </semantics></math> 133 sfu. At solar flux levels 75 sfu <span></span><math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n </mrow>\n <annotation> ${&lt; } $</annotation>\n </semantics></math> F10.7 <span></span><math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n </mrow>\n <annotation> ${&lt; } $</annotation>\n </semantics></math> 125 sfu, electron density perturbations are of order 10%–35% for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mi>b</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{b}$</annotation>\n </semantics></math> and 15%–25% for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>i</mi>\n <mi>s</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{is}$</annotation>\n </semantics></math>. Vertical E <span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n </mrow>\n <annotation> ${\\times} $</annotation>\n </semantics></math> B drifts are of order 5–8 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>ms</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{ms}}^{-1}$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mi>b</mi>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{b}$</annotation>\n </semantics></math>, 3–5 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>ms</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{ms}}^{-1}$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>i</mi>\n <mi>s</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{is}$</annotation>\n </semantics></math>, and 5–8 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>ms</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{ms}}^{-1}$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>SW</mtext>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>i</mi>\n <mi>g</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\text{SW}2}_{ig}$</annotation>\n </semantics></math>, the latter extending to the equator at elevated magnetic activity, and suggesting the presence of penetrating electric fields and/or disturbance dynamo action.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033353","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033353","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The nature and origins of solar-synchronous semidiurnal variations (SW2) in the thermosphere and ionosphere are explored through analysis of Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) simulations that include and exclude forcing by tides at its 97-km lower boundary derived from Ionospheric Connection (ICON) explorer data. SW2 consists of two components, one excited in-situ ( SW 2 i ${\text{SW}2}_{i}$ ) and one due to vertical propagation from below the thermosphere ( SW 2 b ${\text{SW}2}_{b}$ ). SW 2 i ${\text{SW}2}_{i}$ in turn consists of a part forced by heating due to absorption of solar radiation ( SW 2 i s ${\text{SW}2}_{is}$ ) and a part of “geomagnetic” origin ( SW 2 i g ${\text{SW}2}_{ig}$ ) arising from magnetospheric coupling at high latitudes. At 300 km all three components achieve wind and temperature amplitudes of order 25 ms 1 ${\text{ms}}^{-1}$ and 15–20 K within specific geographic domains and levels of solar activity. SW 2 i s ${\text{SW}2}_{is}$ exhibits upward propagation from the lower thermosphere much like the 1 s t ${1}^{st}$ symmetric component of SW 2 b ${\text{SW}2}_{b}$ , refraction toward the winter hemisphere by mean winds, modulation by the ${\sim} $ 27-day solar rotation rate, and is estimated to exceed SW 2 b ${\text{SW}2}_{b}$ in general importance for F10.7 > ${ >} $ 133 sfu. At solar flux levels 75 sfu < ${< } $ F10.7 < ${< } $ 125 sfu, electron density perturbations are of order 10%–35% for SW 2 b ${\text{SW}2}_{b}$ and 15%–25% for SW 2 i s ${\text{SW}2}_{is}$ . Vertical E × ${\times} $ B drifts are of order 5–8 ms 1 ${\text{ms}}^{-1}$ for SW 2 b ${\text{SW}2}_{b}$ , 3–5 ms 1 ${\text{ms}}^{-1}$ for SW 2 i s ${\text{SW}2}_{is}$ , and 5–8 ms 1 ${\text{ms}}^{-1}$ for SW 2 i g ${\text{SW}2}_{ig}$ , the latter extending to the equator at elevated magnetic activity, and suggesting the presence of penetrating electric fields and/or disturbance dynamo action.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信