{"title":"Dragonfly-Inspired Compound Eye Lens with Biomimetic Structural Design (Adv. Mater. Interfaces 3/2025)","authors":"Kenshin Takemura, Taisei Motomura, Wataru Iwasaki, Nobutomo Morita, Kazuya Kikunaga","doi":"10.1002/admi.202570007","DOIUrl":null,"url":null,"abstract":"<p><b>Compound Eye Lens</b></p><p>Dragonflies use their 360-degree wide-angle view to catch small prey and escape from natural enemies approaching from behind. This functionality is made possible by a three-dimensional compound eye, which consists of more than 30000 individual eyes. In article 2400480, Kenshin Takemura and co-workers develop a mold that could perfectly reproduce the compound eyes of dragonflies using a wide variety of materials.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202570007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202570007","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Compound Eye Lens
Dragonflies use their 360-degree wide-angle view to catch small prey and escape from natural enemies approaching from behind. This functionality is made possible by a three-dimensional compound eye, which consists of more than 30000 individual eyes. In article 2400480, Kenshin Takemura and co-workers develop a mold that could perfectly reproduce the compound eyes of dragonflies using a wide variety of materials.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.