Magnetohydrodynamic Effects on Double Diffusion of Non-Newtonian Hybrid Nanofluid in Circular Eccentric Annuli

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Israt Jahan Supti, Md. Mamun Molla, Preetom Nag, Sadia Siddiqa, Souhail Souai
{"title":"Magnetohydrodynamic Effects on Double Diffusion of Non-Newtonian Hybrid Nanofluid in Circular Eccentric Annuli","authors":"Israt Jahan Supti,&nbsp;Md. Mamun Molla,&nbsp;Preetom Nag,&nbsp;Sadia Siddiqa,&nbsp;Souhail Souai","doi":"10.1002/eng2.13072","DOIUrl":null,"url":null,"abstract":"<p>The numerical investigation conducted in this study focuses on the heat and mass transfer in magnetohydrodynamic non-Newtonian power-law fluid flow of temperature-dependent Al<sub>2</sub>O<sub>3</sub>–Fe<sub>3</sub>O<sub>4</sub>–water hybrid nanofluid within cylindrical annuli across four different eccentricities. This type of problem finds widespread application in various engineering contexts, where hybrid non-Newtonian fluids offer enhanced efficiency for cooling and insulation purposes. In this configuration, the inner circle of the geometry is hot while the outer circle is cold, with the nanofluid filling the space between the cylinders. The governing equations are simulated using the Galerkin weighted residual finite element method. Various parameters are controlled in the study, including the Rayleigh number ranging from <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>10</mn>\n <mn>4</mn>\n </msup>\n </mrow>\n <annotation>$$ {10}^4 $$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>10</mn>\n <mn>6</mn>\n </msup>\n </mrow>\n <annotation>$$ {10}^6 $$</annotation>\n </semantics></math>, power-law index ranging from <span></span><math>\n <semantics>\n <mrow>\n <mn>0.7</mn>\n </mrow>\n <annotation>$$ 0.7 $$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mn>1.4</mn>\n </mrow>\n <annotation>$$ 1.4 $$</annotation>\n </semantics></math>, nanoparticle volume fraction ranging from <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$$ 0\\% $$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$$ 4\\% $$</annotation>\n </semantics></math>, Hartmann number ranging from <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n </mrow>\n <annotation>$$ 0 $$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mn>30</mn>\n </mrow>\n <annotation>$$ 30 $$</annotation>\n </semantics></math>, Buoyancy ratio ranging from <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ -1 $$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n </mrow>\n <annotation>$$ 1 $$</annotation>\n </semantics></math>, and Lewis number ranging from <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n </mrow>\n <annotation>$$ 1 $$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mn>10</mn>\n </mrow>\n <annotation>$$ 10 $$</annotation>\n </semantics></math>, in addition to the fixed Prandtl number (6.8377). The study presents visualizations such as streamlines, isotherms, and iso-concentration contours, along with the assessment of heat and mass transfer rates expressed in terms of Nusselt and Sherwood numbers. The findings reveal that the heat transfer rate increases with higher nanoparticle volume fraction, Rayleigh number, and Buoyancy ratio. Similarly, the mass transfer rate is enhanced with increased Rayleigh number, Lewis number, and power-law index. Notably, elevating the power-law index leads to a decrease of 50.1% in the local Nusselt number and 52.4% in the local Sherwood number, respectively. With <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>0.7</mn>\n </mrow>\n <annotation>$$ n=0.7 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>ϕ</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ \\phi =0 $$</annotation>\n </semantics></math>, increasing <span></span><math>\n <semantics>\n <mrow>\n <mi>Ra</mi>\n </mrow>\n <annotation>$$ Ra $$</annotation>\n </semantics></math> from <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>10</mn>\n <mn>4</mn>\n </msup>\n </mrow>\n <annotation>$$ {10}^4 $$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>10</mn>\n <mn>6</mn>\n </msup>\n </mrow>\n <annotation>$$ {10}^6 $$</annotation>\n </semantics></math> raises <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>Nu</mi>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{Nu} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>Sh</mi>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation>$$ \\overline{Sh} $$</annotation>\n </semantics></math>.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13072","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The numerical investigation conducted in this study focuses on the heat and mass transfer in magnetohydrodynamic non-Newtonian power-law fluid flow of temperature-dependent Al2O3–Fe3O4–water hybrid nanofluid within cylindrical annuli across four different eccentricities. This type of problem finds widespread application in various engineering contexts, where hybrid non-Newtonian fluids offer enhanced efficiency for cooling and insulation purposes. In this configuration, the inner circle of the geometry is hot while the outer circle is cold, with the nanofluid filling the space between the cylinders. The governing equations are simulated using the Galerkin weighted residual finite element method. Various parameters are controlled in the study, including the Rayleigh number ranging from 10 4 $$ {10}^4 $$ to 10 6 $$ {10}^6 $$ , power-law index ranging from 0.7 $$ 0.7 $$ to 1.4 $$ 1.4 $$ , nanoparticle volume fraction ranging from 0 % $$ 0\% $$ to 4 % $$ 4\% $$ , Hartmann number ranging from 0 $$ 0 $$ to 30 $$ 30 $$ , Buoyancy ratio ranging from 1 $$ -1 $$ to 1 $$ 1 $$ , and Lewis number ranging from 1 $$ 1 $$ to 10 $$ 10 $$ , in addition to the fixed Prandtl number (6.8377). The study presents visualizations such as streamlines, isotherms, and iso-concentration contours, along with the assessment of heat and mass transfer rates expressed in terms of Nusselt and Sherwood numbers. The findings reveal that the heat transfer rate increases with higher nanoparticle volume fraction, Rayleigh number, and Buoyancy ratio. Similarly, the mass transfer rate is enhanced with increased Rayleigh number, Lewis number, and power-law index. Notably, elevating the power-law index leads to a decrease of 50.1% in the local Nusselt number and 52.4% in the local Sherwood number, respectively. With n = 0.7 $$ n=0.7 $$ and ϕ = 0 $$ \phi =0 $$ , increasing Ra $$ Ra $$ from 10 4 $$ {10}^4 $$ to 10 6 $$ {10}^6 $$ raises Nu $$ \overline{Nu} $$ and Sh $$ \overline{Sh} $$ .

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信