A Fully Degradable, Bio-Safe Supercapacitor Targeting for Harmless Disposal of Energy Storage Devices

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2024-12-03 DOI:10.1002/eom2.12506
Chang Xu, Shiqiang Guan, Xijing Zhuang, Xufeng Dong
{"title":"A Fully Degradable, Bio-Safe Supercapacitor Targeting for Harmless Disposal of Energy Storage Devices","authors":"Chang Xu,&nbsp;Shiqiang Guan,&nbsp;Xijing Zhuang,&nbsp;Xufeng Dong","doi":"10.1002/eom2.12506","DOIUrl":null,"url":null,"abstract":"<p>Supercapacitors show broad application prospects as promising energy supply units for future integrated or even implantable electronic devices, but their poor degradability and high biotoxicity severely limit their further development. Regarding this, future-oriented supercapacitors with fully degradable behavior and excellent biosafety have been prepared through the wide application of degradable polymers and a rational encapsulation and isolation strategy. The combination of self-supporting pulp fiber/graphene composite electrodes and guar gum gel electrolyte endows the devices with ideal rate performance and long lifetime. The devices demonstrate extremely low cytotoxicity and satisfactory biocompatibility. The implantation caused no significant rejection and did not affect the survival status of the SD rats, suggesting the possibility of powering implantable electronics. Notably, all components of the device (electrodes, electrolyte, substrate, and encapsulation materials) do not contain hazardous or non-degradable materials, allowing for true complete degradability. The preparation strategy and material selection in the study are expected to be generalized to a wide range of energy storage systems, providing some reference and guidance for the harmless disposal of energy storage devices and even microelectronics.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12506","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitors show broad application prospects as promising energy supply units for future integrated or even implantable electronic devices, but their poor degradability and high biotoxicity severely limit their further development. Regarding this, future-oriented supercapacitors with fully degradable behavior and excellent biosafety have been prepared through the wide application of degradable polymers and a rational encapsulation and isolation strategy. The combination of self-supporting pulp fiber/graphene composite electrodes and guar gum gel electrolyte endows the devices with ideal rate performance and long lifetime. The devices demonstrate extremely low cytotoxicity and satisfactory biocompatibility. The implantation caused no significant rejection and did not affect the survival status of the SD rats, suggesting the possibility of powering implantable electronics. Notably, all components of the device (electrodes, electrolyte, substrate, and encapsulation materials) do not contain hazardous or non-degradable materials, allowing for true complete degradability. The preparation strategy and material selection in the study are expected to be generalized to a wide range of energy storage systems, providing some reference and guidance for the harmless disposal of energy storage devices and even microelectronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信