Pharmaceuticals, Pesticides, and PFAS: Quantifying Endocrine Disrupting Compounds in Plastics and Fish Tissues Using Solvent Extraction and LC-MS/MS

IF 2.8 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Sophie Dolling, Patrick Reis-Santos, Mike Williams, Bronwyn M. Gillanders
{"title":"Pharmaceuticals, Pesticides, and PFAS: Quantifying Endocrine Disrupting Compounds in Plastics and Fish Tissues Using Solvent Extraction and LC-MS/MS","authors":"Sophie Dolling,&nbsp;Patrick Reis-Santos,&nbsp;Mike Williams,&nbsp;Bronwyn M. Gillanders","doi":"10.1002/jssc.70084","DOIUrl":null,"url":null,"abstract":"<p>The rise of plastic pollution in marine environments has been heavily documented, with particular focus on the physical impacts the plastics can have on biota. But, plastics also sorb a range of hydrophobic chemical pollutants, acting as vectors for the transportation of these compounds throughout marine environments. Therefore, an analytical method that can target both marine biota and plastic matrices will be key to advance our understanding of the link between chemicals in the environment, plastic pollution, and effects on biota. Here, an efficient method for the detection and quantification of a broad suite of compounds in marine samples was developed. Five extraction methods were trialed for the analysis of 21 pesticides, PFAS, and pharmaceuticals in biota and plastics. This included three ultrasonic extraction methods and two QuEChERS methods. Ultrasonic extraction in acetonitrile with a microcentrifuge step then concentration by Bond Elut Carbon SPE resulted in best recovery across most compounds. Of the 21 compounds trialed, 16 were efficiently quantified. Method limits of quantification and detection were between 0.02 and 4.81 ppb (mLODs) and between 0.06 and 14.60 ppb (mLOQs). This method is widely applicable to a range of marine environments and supports routine evaluations of environmental safety and monitoring protocols.</p>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"48 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jssc.70084","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70084","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of plastic pollution in marine environments has been heavily documented, with particular focus on the physical impacts the plastics can have on biota. But, plastics also sorb a range of hydrophobic chemical pollutants, acting as vectors for the transportation of these compounds throughout marine environments. Therefore, an analytical method that can target both marine biota and plastic matrices will be key to advance our understanding of the link between chemicals in the environment, plastic pollution, and effects on biota. Here, an efficient method for the detection and quantification of a broad suite of compounds in marine samples was developed. Five extraction methods were trialed for the analysis of 21 pesticides, PFAS, and pharmaceuticals in biota and plastics. This included three ultrasonic extraction methods and two QuEChERS methods. Ultrasonic extraction in acetonitrile with a microcentrifuge step then concentration by Bond Elut Carbon SPE resulted in best recovery across most compounds. Of the 21 compounds trialed, 16 were efficiently quantified. Method limits of quantification and detection were between 0.02 and 4.81 ppb (mLODs) and between 0.06 and 14.60 ppb (mLOQs). This method is widely applicable to a range of marine environments and supports routine evaluations of environmental safety and monitoring protocols.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of separation science
Journal of separation science 化学-分析化学
CiteScore
6.30
自引率
16.10%
发文量
408
审稿时长
1.8 months
期刊介绍: The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信