Ocean Chlorophyll Feedback in a Coupled Ocean-Atmosphere Model for the Mediterranean and Black Seas

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
John Karagiorgos, Vassilios Vervatis, Sarantis Sofianos
{"title":"Ocean Chlorophyll Feedback in a Coupled Ocean-Atmosphere Model for the Mediterranean and Black Seas","authors":"John Karagiorgos,&nbsp;Vassilios Vervatis,&nbsp;Sarantis Sofianos","doi":"10.1029/2024JC021985","DOIUrl":null,"url":null,"abstract":"<p>Ocean water clarity, influenced by marine chlorophyll concentration, significantly alters the distribution of shortwave radiation in the water column. This work aims to assess the effects of varying chlorophyll on the upper-ocean physical properties and their subsequent impact on the atmosphere, using a coupled ocean-atmosphere regional model for the Mediterranean and Black Seas. We performed 11-year (2011–2021) twin-simulation experiments based on different chlorophyll concentrations to estimate the penetration of solar radiation in the ocean. The first simulation used a monthly climatology field of chlorophyll concentrations derived from satellite observations, while in the second experiment, the chlorophyll concentration was kept constant at 0.05 <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mi>g</mi>\n <mspace></mspace>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $\\mathrm{m}\\mathrm{g}\\ {\\mathrm{m}}^{-3}$</annotation>\n </semantics></math>, representing clear water conditions. Results show that radiative heating driven by chlorophyll amplifies the seasonal cycle of temperature in the upper layers, leading to increased surface warming in summer and surface cooling in winter. Also, higher surface chlorophyll contributes to cooling in subsurface layers throughout the year due to its shading effect. The temperature response to chlorophyll variations is controlled by the mixed layer depth and a balance between (a) direct near-surface radiative heating due to the chlorophyll absorption and (b) indirect cooling resulting from vertical turbulent mixing processes with subsurface waters. The atmosphere moderates the seasonal sea surface temperature (SST) response caused by chlorophyll differential heating primarily through changes in latent heat flux. Ultimately, our simulations suggest that increased surface chlorophyll concentrations enhance the Mediterranean overturning circulation, highlighting the necessity of incorporating realistic optical forcing into regional climate modeling studies.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021985","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021985","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Ocean water clarity, influenced by marine chlorophyll concentration, significantly alters the distribution of shortwave radiation in the water column. This work aims to assess the effects of varying chlorophyll on the upper-ocean physical properties and their subsequent impact on the atmosphere, using a coupled ocean-atmosphere regional model for the Mediterranean and Black Seas. We performed 11-year (2011–2021) twin-simulation experiments based on different chlorophyll concentrations to estimate the penetration of solar radiation in the ocean. The first simulation used a monthly climatology field of chlorophyll concentrations derived from satellite observations, while in the second experiment, the chlorophyll concentration was kept constant at 0.05 m g m 3 $\mathrm{m}\mathrm{g}\ {\mathrm{m}}^{-3}$ , representing clear water conditions. Results show that radiative heating driven by chlorophyll amplifies the seasonal cycle of temperature in the upper layers, leading to increased surface warming in summer and surface cooling in winter. Also, higher surface chlorophyll contributes to cooling in subsurface layers throughout the year due to its shading effect. The temperature response to chlorophyll variations is controlled by the mixed layer depth and a balance between (a) direct near-surface radiative heating due to the chlorophyll absorption and (b) indirect cooling resulting from vertical turbulent mixing processes with subsurface waters. The atmosphere moderates the seasonal sea surface temperature (SST) response caused by chlorophyll differential heating primarily through changes in latent heat flux. Ultimately, our simulations suggest that increased surface chlorophyll concentrations enhance the Mediterranean overturning circulation, highlighting the necessity of incorporating realistic optical forcing into regional climate modeling studies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信