Influence of Silane-Treated Jute/Kenaf Fibers on the Mechanical Properties of Polymer Composites for Biomedical Applications: Optimization Using RSM and ANN Approaches

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
R. Saravanan, S. Jothi Arunachalam, T. Sathish, Jayant Giri, Muhammad Imam Ammarullah
{"title":"Influence of Silane-Treated Jute/Kenaf Fibers on the Mechanical Properties of Polymer Composites for Biomedical Applications: Optimization Using RSM and ANN Approaches","authors":"R. Saravanan,&nbsp;S. Jothi Arunachalam,&nbsp;T. Sathish,&nbsp;Jayant Giri,&nbsp;Muhammad Imam Ammarullah","doi":"10.1002/eng2.13059","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the effect of silane-treated jute/kenaf fibers on the flexural and hardness properties of polymer composites for potential biomedical applications, such as prosthetics and bio-implants. Using response surface methodology (RSM) and artificial neural network (ANN), the optimal combination of nanoparticle percentage, silane concentration, and silane dipping duration was identified to enhance the mechanical properties of the composites. RSM, coupled with analysis of variance (ANOVA), evaluated the influence of these variables on composite performance, revealing that silane treatment significantly improved flexural strength, while all fiber-related variables impacted both flexural strength and hardness. The silane dipping duration emerged as the most influential factor, with nanoparticle addition enhancing fiber–matrix interactions and promoting better agglomeration. The ANN model accurately predicted the composite's properties, with results strongly correlating to experimental data. The optimized formulation, consisting of 5% nanoparticle content, 10% silane treatment, and a 20-min silane dipping duration, demonstrated a 26.22% increase in flexural strength and a 33.15% improvement in hardness. This optimized composite formulation holds promise for use in biomedical applications requiring high mechanical strength and durability, such as in prosthetic materials and orthopedic implants, where enhanced flexural strength and hardness are critical for longevity and performance.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effect of silane-treated jute/kenaf fibers on the flexural and hardness properties of polymer composites for potential biomedical applications, such as prosthetics and bio-implants. Using response surface methodology (RSM) and artificial neural network (ANN), the optimal combination of nanoparticle percentage, silane concentration, and silane dipping duration was identified to enhance the mechanical properties of the composites. RSM, coupled with analysis of variance (ANOVA), evaluated the influence of these variables on composite performance, revealing that silane treatment significantly improved flexural strength, while all fiber-related variables impacted both flexural strength and hardness. The silane dipping duration emerged as the most influential factor, with nanoparticle addition enhancing fiber–matrix interactions and promoting better agglomeration. The ANN model accurately predicted the composite's properties, with results strongly correlating to experimental data. The optimized formulation, consisting of 5% nanoparticle content, 10% silane treatment, and a 20-min silane dipping duration, demonstrated a 26.22% increase in flexural strength and a 33.15% improvement in hardness. This optimized composite formulation holds promise for use in biomedical applications requiring high mechanical strength and durability, such as in prosthetic materials and orthopedic implants, where enhanced flexural strength and hardness are critical for longevity and performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信