GPX3 Overexpression Ameliorates Cardiac Injury Post Myocardial Infarction Through Activating LSD1/Hif1α Axis

IF 5.3
Qi-Qi Jiang, Chong Du, Ling-Ling Qian, Tian-Kai Shan, Yu-Lin Bao, Ling-Feng Gu, Si-Bo Wang, Tong-Tong Yang, Liu-Hua Zhou, Ze-Mu Wang, Ye He, Qi-Ming Wang, Hao Wang, Ru-Xing Wang, Lian-Sheng Wang
{"title":"GPX3 Overexpression Ameliorates Cardiac Injury Post Myocardial Infarction Through Activating LSD1/Hif1α Axis","authors":"Qi-Qi Jiang,&nbsp;Chong Du,&nbsp;Ling-Ling Qian,&nbsp;Tian-Kai Shan,&nbsp;Yu-Lin Bao,&nbsp;Ling-Feng Gu,&nbsp;Si-Bo Wang,&nbsp;Tong-Tong Yang,&nbsp;Liu-Hua Zhou,&nbsp;Ze-Mu Wang,&nbsp;Ye He,&nbsp;Qi-Ming Wang,&nbsp;Hao Wang,&nbsp;Ru-Xing Wang,&nbsp;Lian-Sheng Wang","doi":"10.1111/jcmm.70398","DOIUrl":null,"url":null,"abstract":"<p>Myocardial infarction (MI) often results in significant loss of cardiomyocytes (CMs), contributing to adverse ventricular remodelling and heart failure. Therefore, promoting CM survival during the acute stage of MI is crucial. This study aimed to investigate the potential role of GPX3 in cardiac repair following MI. First, plasma GPX3 levels were measured in patients with acute MI (AMI), and myocardial GPX3 expression was assessed in a mouse MI model. Furthermore, the effects of GPX3 on MI were investigated through CM-specific overexpression or knockdown in vitro and in vivo models. RNA sequencing and subsequent experiments were performed to uncover the molecular mechanisms underlying GPX3-related effects. Multi-omics database analysis and experimental verification revealed a significant upregulation of GPX3 expression in ischemic myocardium following MI and in CMs exposed to oxygen–glucose deprivation (OGD). Immunofluorescence results further confirmed elevated cytoplasmic GPX3 expression in CMs under hypoxic conditions. In vitro, GPX3 overexpression mitigated reactive oxygen species (ROS) production and enhanced CM survival during hypoxia, while GPX3 knockdown inhibited these processes. In vivo, CM-specific GPX3 overexpression in the infarct border zone significantly attenuated CM apoptosis and alleviated myocardial injury, promoting cardiac repair and long-term functional recovery. Mechanistically, GPX3 overexpression upregulated LSD1 and Hif1α protein expression, and rescue experiments confirmed the involvement of the LSD1/Hif1α pathway in mediating the protective effects of GPX3. Overall, our findings suggest that GPX3 exerts a protective role in ischemic myocardium post-MI, at least partially through the LSD1/Hif1α axis, highlighting its potential as a therapeutic target for MI treatment.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 3","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70398","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial infarction (MI) often results in significant loss of cardiomyocytes (CMs), contributing to adverse ventricular remodelling and heart failure. Therefore, promoting CM survival during the acute stage of MI is crucial. This study aimed to investigate the potential role of GPX3 in cardiac repair following MI. First, plasma GPX3 levels were measured in patients with acute MI (AMI), and myocardial GPX3 expression was assessed in a mouse MI model. Furthermore, the effects of GPX3 on MI were investigated through CM-specific overexpression or knockdown in vitro and in vivo models. RNA sequencing and subsequent experiments were performed to uncover the molecular mechanisms underlying GPX3-related effects. Multi-omics database analysis and experimental verification revealed a significant upregulation of GPX3 expression in ischemic myocardium following MI and in CMs exposed to oxygen–glucose deprivation (OGD). Immunofluorescence results further confirmed elevated cytoplasmic GPX3 expression in CMs under hypoxic conditions. In vitro, GPX3 overexpression mitigated reactive oxygen species (ROS) production and enhanced CM survival during hypoxia, while GPX3 knockdown inhibited these processes. In vivo, CM-specific GPX3 overexpression in the infarct border zone significantly attenuated CM apoptosis and alleviated myocardial injury, promoting cardiac repair and long-term functional recovery. Mechanistically, GPX3 overexpression upregulated LSD1 and Hif1α protein expression, and rescue experiments confirmed the involvement of the LSD1/Hif1α pathway in mediating the protective effects of GPX3. Overall, our findings suggest that GPX3 exerts a protective role in ischemic myocardium post-MI, at least partially through the LSD1/Hif1α axis, highlighting its potential as a therapeutic target for MI treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
文献相关原料
公司名称
产品信息
索莱宝
Masson's trichrome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信