Multifunctional Surface Enhanced Raman Scattering Substrate Fe 3O4 @AgNPs@MIL-101 for Pretreatment and Rapid Detection of Pesticide Residues on the Surface of Fruit Peels

IF 3.2 4区 化学 Q2 CHEMISTRY, ANALYTICAL
Luminescence Pub Date : 2025-02-03 DOI:10.1002/bio.70106
Mingyu Zhang, Yizhuo Tian, Sijia Liu, Yu Wang, Haiyan Li, Yafei Chen, Qing Gao, Xinli Wang, Mingli Chen
{"title":"Multifunctional Surface Enhanced Raman Scattering Substrate Fe 3O4 @AgNPs@MIL-101 for Pretreatment and Rapid Detection of Pesticide Residues on the Surface of Fruit Peels","authors":"Mingyu Zhang,&nbsp;Yizhuo Tian,&nbsp;Sijia Liu,&nbsp;Yu Wang,&nbsp;Haiyan Li,&nbsp;Yafei Chen,&nbsp;Qing Gao,&nbsp;Xinli Wang,&nbsp;Mingli Chen","doi":"10.1002/bio.70106","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A multifunctional surface-enhanced Raman scattering substrate Fe<sub>3</sub>O<sub>4</sub>@AgNPs@MIL-101 was prepared. Rapid SERS detection of pesticide residues was realized by direct pre-enrichment and separation on the peel surface. MIL-101 has an ortho-octahedral framework and large pore size, which endowed Fe<sub>3</sub>O<sub>4</sub>@AgNPs@MIL-101 with the ability to rapidly adsorb and separate positively charged targets. The introduction of tannic acid realized the in situ growth of AgNPs on the backbone, to modulate the electromagnetic enhancement. Pesticide molecules were adsorbed onto the surface of AgNPs mediated by central S atoms, accompanied by the interaction between pesticide molecules and AgNPs, the corresponding SERS signals of different pesticides were observed. Together with the introduction of magnetic coating Fe<sub>3</sub>O<sub>4</sub>, the molecules were enriched in the hotspot and separated to further enhance the SERS performance. Magnet instead of centrifugation was used to simultaneously perform surface extraction and sample separation for a noninvasive, rapid, immediate, and portable assay. The method was accomplished in measurement of thiram and thiabendazole on apple and tangerine epidermis, and the limits of detection (LODs) were 20 ng/cm<sup>2</sup> and 4 μg/cm<sup>2</sup>, respectively. The recovery was reasonable, and it showed that the procedure is valuable for the rapid and nondestructive surface analysis of residual chemicals.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bio.70106","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A multifunctional surface-enhanced Raman scattering substrate Fe3O4@AgNPs@MIL-101 was prepared. Rapid SERS detection of pesticide residues was realized by direct pre-enrichment and separation on the peel surface. MIL-101 has an ortho-octahedral framework and large pore size, which endowed Fe3O4@AgNPs@MIL-101 with the ability to rapidly adsorb and separate positively charged targets. The introduction of tannic acid realized the in situ growth of AgNPs on the backbone, to modulate the electromagnetic enhancement. Pesticide molecules were adsorbed onto the surface of AgNPs mediated by central S atoms, accompanied by the interaction between pesticide molecules and AgNPs, the corresponding SERS signals of different pesticides were observed. Together with the introduction of magnetic coating Fe3O4, the molecules were enriched in the hotspot and separated to further enhance the SERS performance. Magnet instead of centrifugation was used to simultaneously perform surface extraction and sample separation for a noninvasive, rapid, immediate, and portable assay. The method was accomplished in measurement of thiram and thiabendazole on apple and tangerine epidermis, and the limits of detection (LODs) were 20 ng/cm2 and 4 μg/cm2, respectively. The recovery was reasonable, and it showed that the procedure is valuable for the rapid and nondestructive surface analysis of residual chemicals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Luminescence
Luminescence 生物-生化与分子生物学
CiteScore
5.10
自引率
13.80%
发文量
248
审稿时长
3.5 months
期刊介绍: Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry. Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信