Determination of Solubility and Metastable Zone of Sodium Hypophosphite and Nucleation Kinetics

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Jianbo Liu, Tianjian Zhang, Hang Su, Xin Xu
{"title":"Determination of Solubility and Metastable Zone of Sodium Hypophosphite and Nucleation Kinetics","authors":"Jianbo Liu,&nbsp;Tianjian Zhang,&nbsp;Hang Su,&nbsp;Xin Xu","doi":"10.1002/ceat.202400186","DOIUrl":null,"url":null,"abstract":"<p>To obtain thermodynamic and kinetic data of sodium hypophosphite, such as solubility and metastable zone, respectively, the solubility data for sodium hypophosphite in the temperature range of 298.15–373.15 K were obtained using a dynamic method. These data were then fitted to the Apelblat and Van't Hoff equations, and the corresponding model parameters were determined. The effects of stirring intensity and cooling rate on the width of the metastable zone of sodium hypophosphite in water were studied. The findings indicated that an increase in stirring intensity reduced the width of the metastable zone, whereas an increase in cooling rate resulted in its widening. The self-consistent NýVlt and Sangwal metastable zone models were employed to calculate nucleation dynamic parameters in conjunction with classical nucleation theory. The results showed that the nucleation order was 2.311–3.361 over the investigated temperature range. 316.15 K is the critical temperature point at which sodium hypophosphite transforms into a dominant nucleation mode. The solid–liquid interface tension decreased rapidly with the increase of saturation temperature, and the solid–liquid interface tension is 1.167–2.638 mJ m<sup>−2</sup>.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400186","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To obtain thermodynamic and kinetic data of sodium hypophosphite, such as solubility and metastable zone, respectively, the solubility data for sodium hypophosphite in the temperature range of 298.15–373.15 K were obtained using a dynamic method. These data were then fitted to the Apelblat and Van't Hoff equations, and the corresponding model parameters were determined. The effects of stirring intensity and cooling rate on the width of the metastable zone of sodium hypophosphite in water were studied. The findings indicated that an increase in stirring intensity reduced the width of the metastable zone, whereas an increase in cooling rate resulted in its widening. The self-consistent NýVlt and Sangwal metastable zone models were employed to calculate nucleation dynamic parameters in conjunction with classical nucleation theory. The results showed that the nucleation order was 2.311–3.361 over the investigated temperature range. 316.15 K is the critical temperature point at which sodium hypophosphite transforms into a dominant nucleation mode. The solid–liquid interface tension decreased rapidly with the increase of saturation temperature, and the solid–liquid interface tension is 1.167–2.638 mJ m−2.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信