Inference of Wildfire Causes From Their Physical, Biological, Social and Management Attributes

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2025-01-02 DOI:10.1029/2024EF005187
Yavar Pourmohamad, John T. Abatzoglou, Erica Fleishman, Karen C. Short, Jacquelyn Shuman, Amir AghaKouchak, Matthew Williamson, Seyd Teymoor Seydi, Mojtaba Sadegh
{"title":"Inference of Wildfire Causes From Their Physical, Biological, Social and Management Attributes","authors":"Yavar Pourmohamad,&nbsp;John T. Abatzoglou,&nbsp;Erica Fleishman,&nbsp;Karen C. Short,&nbsp;Jacquelyn Shuman,&nbsp;Amir AghaKouchak,&nbsp;Matthew Williamson,&nbsp;Seyd Teymoor Seydi,&nbsp;Mojtaba Sadegh","doi":"10.1029/2024EF005187","DOIUrl":null,"url":null,"abstract":"<p>Effective wildfire prevention includes actions to deliberately target different wildfire causes. However, the cause of an increasing number of wildfires is unknown, hindering targeted prevention efforts. We developed a machine learning model of wildfire ignition cause across the western United States on the basis of physical, biological, social, and management attributes associated with wildfires. Trained on wildfires from 1992 to 2020 with 12 known causes, the overall accuracy of our model exceeded 70% when applied to out-of-sample test data. Our model more accurately separated wildfires ignited by natural versus human causes (93% accuracy), and discriminated among the 11 classes of human-ignited wildfires with 55% accuracy. Our model attributed the greatest percentage of 150,247 wildfires from 1992 to 2020 for which the ignition source was unknown to equipment and vehicle use (21%), lightning (20%), and arson and incendiarism (18%).</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005187","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005187","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Effective wildfire prevention includes actions to deliberately target different wildfire causes. However, the cause of an increasing number of wildfires is unknown, hindering targeted prevention efforts. We developed a machine learning model of wildfire ignition cause across the western United States on the basis of physical, biological, social, and management attributes associated with wildfires. Trained on wildfires from 1992 to 2020 with 12 known causes, the overall accuracy of our model exceeded 70% when applied to out-of-sample test data. Our model more accurately separated wildfires ignited by natural versus human causes (93% accuracy), and discriminated among the 11 classes of human-ignited wildfires with 55% accuracy. Our model attributed the greatest percentage of 150,247 wildfires from 1992 to 2020 for which the ignition source was unknown to equipment and vehicle use (21%), lightning (20%), and arson and incendiarism (18%).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信