Study on air entrainment coefficient for different heat release rates and transverse displacements in a tunnel with unpowered ventilation cap

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Huan Luo, Weikang Liang, Xueqian Zhao, Junwei Chi, Ru Zhou, Min Hao, Juncheng Jiang
{"title":"Study on air entrainment coefficient for different heat release rates and transverse displacements in a tunnel with unpowered ventilation cap","authors":"Huan Luo,&nbsp;Weikang Liang,&nbsp;Xueqian Zhao,&nbsp;Junwei Chi,&nbsp;Ru Zhou,&nbsp;Min Hao,&nbsp;Juncheng Jiang","doi":"10.1002/fam.3241","DOIUrl":null,"url":null,"abstract":"<p>An automobile accident may cause combustion and release large quantities of toxic smoke in tunnels. This article investigates how the heat release rate and fire displacements affect the air entrainment coefficient during smoke one-dimensional motion stage along the tunnel by using a shaft with unpowered ventilation cap for natural ventilation. The results show that the air entrainment coefficient increases with the heat release rate when plug-holing occurs in the shaft. The correlation between the air entrainment coefficient and heat release rate is analyzed by dimensionless analysis and verified using experimental data. Different transverse fire source locations do not significantly affect the temperature distribution during the one-dimensional horizontal spread of smoke. The air entrainment coefficient exhibits no significant difference for different transverse fire source locations, but is lower for a fire closing to the sidewall than for other locations. The ratio of the air entrainment coefficient for a fire source near the sidewall to that for a fire source at the center of the tunnel is 0.76–0.96. This research contributes to a deeper understanding of smoke dynamics in tunnels, which can ultimately aid in the development of strategies to help trapped people escape.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 1","pages":"3-13"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3241","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An automobile accident may cause combustion and release large quantities of toxic smoke in tunnels. This article investigates how the heat release rate and fire displacements affect the air entrainment coefficient during smoke one-dimensional motion stage along the tunnel by using a shaft with unpowered ventilation cap for natural ventilation. The results show that the air entrainment coefficient increases with the heat release rate when plug-holing occurs in the shaft. The correlation between the air entrainment coefficient and heat release rate is analyzed by dimensionless analysis and verified using experimental data. Different transverse fire source locations do not significantly affect the temperature distribution during the one-dimensional horizontal spread of smoke. The air entrainment coefficient exhibits no significant difference for different transverse fire source locations, but is lower for a fire closing to the sidewall than for other locations. The ratio of the air entrainment coefficient for a fire source near the sidewall to that for a fire source at the center of the tunnel is 0.76–0.96. This research contributes to a deeper understanding of smoke dynamics in tunnels, which can ultimately aid in the development of strategies to help trapped people escape.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信