{"title":"Study on air entrainment coefficient for different heat release rates and transverse displacements in a tunnel with unpowered ventilation cap","authors":"Huan Luo, Weikang Liang, Xueqian Zhao, Junwei Chi, Ru Zhou, Min Hao, Juncheng Jiang","doi":"10.1002/fam.3241","DOIUrl":null,"url":null,"abstract":"<p>An automobile accident may cause combustion and release large quantities of toxic smoke in tunnels. This article investigates how the heat release rate and fire displacements affect the air entrainment coefficient during smoke one-dimensional motion stage along the tunnel by using a shaft with unpowered ventilation cap for natural ventilation. The results show that the air entrainment coefficient increases with the heat release rate when plug-holing occurs in the shaft. The correlation between the air entrainment coefficient and heat release rate is analyzed by dimensionless analysis and verified using experimental data. Different transverse fire source locations do not significantly affect the temperature distribution during the one-dimensional horizontal spread of smoke. The air entrainment coefficient exhibits no significant difference for different transverse fire source locations, but is lower for a fire closing to the sidewall than for other locations. The ratio of the air entrainment coefficient for a fire source near the sidewall to that for a fire source at the center of the tunnel is 0.76–0.96. This research contributes to a deeper understanding of smoke dynamics in tunnels, which can ultimately aid in the development of strategies to help trapped people escape.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 1","pages":"3-13"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3241","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An automobile accident may cause combustion and release large quantities of toxic smoke in tunnels. This article investigates how the heat release rate and fire displacements affect the air entrainment coefficient during smoke one-dimensional motion stage along the tunnel by using a shaft with unpowered ventilation cap for natural ventilation. The results show that the air entrainment coefficient increases with the heat release rate when plug-holing occurs in the shaft. The correlation between the air entrainment coefficient and heat release rate is analyzed by dimensionless analysis and verified using experimental data. Different transverse fire source locations do not significantly affect the temperature distribution during the one-dimensional horizontal spread of smoke. The air entrainment coefficient exhibits no significant difference for different transverse fire source locations, but is lower for a fire closing to the sidewall than for other locations. The ratio of the air entrainment coefficient for a fire source near the sidewall to that for a fire source at the center of the tunnel is 0.76–0.96. This research contributes to a deeper understanding of smoke dynamics in tunnels, which can ultimately aid in the development of strategies to help trapped people escape.
期刊介绍:
Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals.
Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.