Influence of Tachyonic Instability on the Schwinger Effect by Axial Coupling in Natural Inflation Model When Strong Back-Reaction Exists

IF 5.6 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Mehran Kamarpour
{"title":"Influence of Tachyonic Instability on the Schwinger Effect by Axial Coupling in Natural Inflation Model When Strong Back-Reaction Exists","authors":"Mehran Kamarpour","doi":"10.1002/prop.202400154","DOIUrl":null,"url":null,"abstract":"<p>The influence of tachyonic instability on the Schwinger effect is investigated by axial coupling in the natural single-field inflation model when strong back-reaction exists in two parts. First, the Schwinger effect is considered when the conformal invariance of Maxwell action should be broken by axial coupling <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mrow>\n <mo>(</mo>\n <mi>ϕ</mi>\n <mo>)</mo>\n </mrow>\n <msub>\n <mi>F</mi>\n <mrow>\n <mi>μ</mi>\n <mi>ν</mi>\n </mrow>\n </msub>\n <msup>\n <mover>\n <mi>F</mi>\n <mo>∼</mo>\n </mover>\n <mrow>\n <mi>μ</mi>\n <mi>ν</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$ I(\\phi)F_{\\mu \\nu }\\tilde{F}^{\\mu \\nu }$</annotation>\n </semantics></math> with the inflaton field by identifying the standard horizon scale <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mi>a</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$ k=aH$</annotation>\n </semantics></math> at the very beginning of inflation for additional boundary term and use several values of coupling constant <span></span><math>\n <semantics>\n <msub>\n <mi>χ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$ \\chi _{1}$</annotation>\n </semantics></math> and estimate electric and magnetic energy densities and energy density of produced charged particles due to the Schwinger effect. It has been found that for both coupling functions the energy density of the produced charged particles due to the Schwinger effect is so high and spoils inflaton field. In fact the strong coupling or back-reaction occurs because the energy density of produced charged particles is exceeding of inflaton field. Two coupling functions are used to break conformal invariance of maxwell action. The simplest coupling function <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mfenced>\n <mi>ϕ</mi>\n </mfenced>\n <mo>=</mo>\n <msub>\n <mi>χ</mi>\n <mn>1</mn>\n </msub>\n <mfrac>\n <mi>ϕ</mi>\n <msub>\n <mi>M</mi>\n <mi>p</mi>\n </msub>\n </mfrac>\n </mrow>\n <annotation>$ I\\left(\\phi \\right)=\\chi _{1}\\frac{\\phi }{M_{p}}$</annotation>\n </semantics></math> and a curvature based coupling function <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mfenced>\n <mi>ϕ</mi>\n </mfenced>\n <mo>=</mo>\n <mn>12</mn>\n <msub>\n <mi>χ</mi>\n <mn>1</mn>\n </msub>\n <msup>\n <mi>e</mi>\n <mfenced>\n <msqrt>\n <mfrac>\n <mn>2</mn>\n <mn>3</mn>\n </mfrac>\n </msqrt>\n <mfrac>\n <mi>ϕ</mi>\n <msub>\n <mi>M</mi>\n <mi>p</mi>\n </msub>\n </mfrac>\n </mfenced>\n </msup>\n <mfenced>\n <mfrac>\n <mn>1</mn>\n <mrow>\n <mn>3</mn>\n <msubsup>\n <mi>M</mi>\n <mi>p</mi>\n <mn>2</mn>\n </msubsup>\n </mrow>\n </mfrac>\n <mfenced>\n <mn>4</mn>\n <mi>V</mi>\n <mfenced>\n <mi>ϕ</mi>\n </mfenced>\n </mfenced>\n <mo>+</mo>\n <mfrac>\n <msqrt>\n <mn>2</mn>\n </msqrt>\n <mrow>\n <msqrt>\n <mn>3</mn>\n </msqrt>\n <msub>\n <mi>M</mi>\n <mi>p</mi>\n </msub>\n </mrow>\n </mfrac>\n <mfenced>\n <mfrac>\n <mrow>\n <mi>d</mi>\n <mi>V</mi>\n </mrow>\n <mrow>\n <mi>d</mi>\n <mi>ϕ</mi>\n </mrow>\n </mfrac>\n </mfenced>\n </mfenced>\n </mrow>\n <annotation>$ I\\left(\\phi \\right)= 12\\chi _{1}e^{\\left(\\sqrt {\\frac{2}{3}}\\frac{\\phi }{M_{p}}\\right)}\\left[\\frac{1}{3M_{p}^{2}}\\left(4V\\left(\\phi \\right)\\right)+\\frac{\\sqrt {2}}{\\sqrt {3}M_{p}}\\left(\\frac{dV}{d\\phi }\\right)\\right]$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mfenced>\n <mi>ϕ</mi>\n </mfenced>\n </mrow>\n <annotation>$V\\left(\\phi \\right)$</annotation>\n </semantics></math> is the potential of natural inflation. In second part, in oder to avoid strong back-reaction problem, the horizon scale <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>k</mi>\n <mi>H</mi>\n </msub>\n <mo>=</mo>\n <mi>a</mi>\n <mi>H</mi>\n <mrow>\n <mo>|</mo>\n <mi>ζ</mi>\n <mo>|</mo>\n </mrow>\n <mo>,</mo>\n <mi>ζ</mi>\n <mo>=</mo>\n <mfrac>\n <mrow>\n <msup>\n <mi>I</mi>\n <mo>′</mo>\n </msup>\n <mfenced>\n <mi>ϕ</mi>\n </mfenced>\n <mover>\n <mi>ϕ</mi>\n <mo>̇</mo>\n </mover>\n </mrow>\n <mi>H</mi>\n </mfrac>\n </mrow>\n <annotation>$ k_{H}=aH|\\zeta |, \\zeta =\\frac{{I}^{\\prime }\\left(\\phi \\right)\\dot{\\phi }}{H}$</annotation>\n </semantics></math> is identified in which a given Fourier begins to become tachyonically unstable.The influence of this scale is reducing the value of coupling constant <span></span><math>\n <semantics>\n <msub>\n <mi>χ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$ \\chi _{1}$</annotation>\n </semantics></math> and weakening the back-reaction problem but in both cases strong coupling or strong back-reaction exists and the Schwinger effect is impossible. Therefore, the Schwinger effect in this model is not possible and spoils inflation. Instantly, the Schwinger effect produces very high energy density of charged particles which causes back-reaction problem and spoils inflaton field. It has been stressed that due to existence of strong back-reaction in two cases the energy density of the produced charged particles due to the Schwinger effect spoils inflation. The influence of tachyonic instability in this model is quiet different from our published work in Kamarpour. In Kamarpour, this effect appears by vanishing of electromagnetic energy density and the energy density of charged particles at the very beginning of inflation.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"73 1-2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202400154","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of tachyonic instability on the Schwinger effect is investigated by axial coupling in the natural single-field inflation model when strong back-reaction exists in two parts. First, the Schwinger effect is considered when the conformal invariance of Maxwell action should be broken by axial coupling I ( ϕ ) F μ ν F μ ν $ I(\phi)F_{\mu \nu }\tilde{F}^{\mu \nu }$ with the inflaton field by identifying the standard horizon scale k = a H $ k=aH$ at the very beginning of inflation for additional boundary term and use several values of coupling constant χ 1 $ \chi _{1}$ and estimate electric and magnetic energy densities and energy density of produced charged particles due to the Schwinger effect. It has been found that for both coupling functions the energy density of the produced charged particles due to the Schwinger effect is so high and spoils inflaton field. In fact the strong coupling or back-reaction occurs because the energy density of produced charged particles is exceeding of inflaton field. Two coupling functions are used to break conformal invariance of maxwell action. The simplest coupling function I ϕ = χ 1 ϕ M p $ I\left(\phi \right)=\chi _{1}\frac{\phi }{M_{p}}$ and a curvature based coupling function I ϕ = 12 χ 1 e 2 3 ϕ M p 1 3 M p 2 4 V ϕ + 2 3 M p d V d ϕ $ I\left(\phi \right)= 12\chi _{1}e^{\left(\sqrt {\frac{2}{3}}\frac{\phi }{M_{p}}\right)}\left[\frac{1}{3M_{p}^{2}}\left(4V\left(\phi \right)\right)+\frac{\sqrt {2}}{\sqrt {3}M_{p}}\left(\frac{dV}{d\phi }\right)\right]$ where V ϕ $V\left(\phi \right)$ is the potential of natural inflation. In second part, in oder to avoid strong back-reaction problem, the horizon scale k H = a H | ζ | , ζ = I ϕ ϕ ̇ H $ k_{H}=aH|\zeta |, \zeta =\frac{{I}^{\prime }\left(\phi \right)\dot{\phi }}{H}$ is identified in which a given Fourier begins to become tachyonically unstable.The influence of this scale is reducing the value of coupling constant χ 1 $ \chi _{1}$ and weakening the back-reaction problem but in both cases strong coupling or strong back-reaction exists and the Schwinger effect is impossible. Therefore, the Schwinger effect in this model is not possible and spoils inflation. Instantly, the Schwinger effect produces very high energy density of charged particles which causes back-reaction problem and spoils inflaton field. It has been stressed that due to existence of strong back-reaction in two cases the energy density of the produced charged particles due to the Schwinger effect spoils inflation. The influence of tachyonic instability in this model is quiet different from our published work in Kamarpour. In Kamarpour, this effect appears by vanishing of electromagnetic energy density and the energy density of charged particles at the very beginning of inflation.

在第二部分,为了避免强反作用问题,水平尺度 k H = a H | ζ | 、 ζ = I ′ ϕ œ H $ k_{H}=aH|\zeta |, \zeta =\frac{I}^{prime }\left(\phi \right)\dot{\phi }}{H}$ 在此尺度下,给定的傅立叶开始变得超音速不稳定。这一尺度的影响是降低了耦合常数χ 1 $ \chi _{1}$的值,削弱了反作用问题,但在这两种情况下都存在强耦合或强反作用,施温格效应是不可能的。因此,这个模型中的施温格效应是不可能的,而且会破坏通货膨胀。施温格效应会瞬间产生极高的带电粒子能量密度,从而导致反作用问题,破坏膨胀场。我们强调,由于在两种情况下存在强烈的反作用,施温格效应产生的带电粒子的能量密度会破坏膨胀。在这个模型中,速子不稳定性的影响与我们在卡马普尔发表的研究成果完全不同。在卡马普尔中,这种效应是通过在膨胀开始时电磁能量密度和带电粒子能量密度的消失而出现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信