Seasonal and Inter-Annual Dynamics in Water Quality and Stream Metabolism in a Beaver-Impacted Drought-Sensitive Lowland Catchment

IF 3.2 3区 地球科学 Q1 Environmental Science
Famin Wang, Doerthe Tetzlaff, Christian Birkel, Jonas Freymueller, Songjun Wu, Sylvia Jordan, Chris Soulsby
{"title":"Seasonal and Inter-Annual Dynamics in Water Quality and Stream Metabolism in a Beaver-Impacted Drought-Sensitive Lowland Catchment","authors":"Famin Wang,&nbsp;Doerthe Tetzlaff,&nbsp;Christian Birkel,&nbsp;Jonas Freymueller,&nbsp;Songjun Wu,&nbsp;Sylvia Jordan,&nbsp;Chris Soulsby","doi":"10.1002/hyp.70075","DOIUrl":null,"url":null,"abstract":"<p>Increasing drought frequency and severity from climate change are causing streamflow to become increasingly intermittent in many areas. This has implications for the spatio-temporal characteristics of water quality regimes which need to be understood in terms of risks to the provision of clean water for public supplies and instream habitats. Recent advances in sensor technology allow reliable and accurate high-resolution monitoring of a growing number of water quality parameters. Here, we continuously monitored a suite of water quality parameters over 3 years in an intermittent stream network in the eutrophic, lowland Demnitzer Millcreek catchment, Germany. We focused on the effects of wetland systems impacted by beaver dams on the diurnal, seasonal and inter-annual variation in water quality dynamics at two sites, upstream and downstream of these wetlands. We then used the data to model stream metabolism. Dissolved oxygen and pH were higher upstream of the wetlands, while conductivity, turbidity, chlorophyll <i>a</i> and phosphorous concentrations were higher downstream. We found clear diurnal cycling of dissolved oxygen and pH at both sites. These dynamics were correlated with seasonal hydroclimatic changes and stream metabolism, becoming increasingly pronounced as temperatures increased and flows decreased in spring and summer. Upstream of the wetlands this corresponded to the stream rapidly becoming increasingly heterotrophic as modelled Gross Primary Production (GPP) was exceeded by Ecosystem Respiration (ER). Downstream, where GPP was lower, the stream was usually strongly heterotrophic and prone to increasingly hypoxic conditions (i.e., insufficient oxygen) before streamflow ceased in summer. This coincided with lower velocities and deeper channels in beaver impacted areas. Seasonal and inter-annual variations in water quality were found to mainly correlate with hydroclimatic factors (particularly temperature) and their influence on streamflow. This study highlights that heterotrophy and hypoxia in lowland rivers in central Europe is an important seasonal feature of intermittent streams where agricultural landscapes continue leaching nutrients. These insights contribute to an evidence base for understanding how climate change will affect the quantity and quality of rural water resources in intermittent lowland streams with wetlands where the presence of beavers requires management responses.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70075","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing drought frequency and severity from climate change are causing streamflow to become increasingly intermittent in many areas. This has implications for the spatio-temporal characteristics of water quality regimes which need to be understood in terms of risks to the provision of clean water for public supplies and instream habitats. Recent advances in sensor technology allow reliable and accurate high-resolution monitoring of a growing number of water quality parameters. Here, we continuously monitored a suite of water quality parameters over 3 years in an intermittent stream network in the eutrophic, lowland Demnitzer Millcreek catchment, Germany. We focused on the effects of wetland systems impacted by beaver dams on the diurnal, seasonal and inter-annual variation in water quality dynamics at two sites, upstream and downstream of these wetlands. We then used the data to model stream metabolism. Dissolved oxygen and pH were higher upstream of the wetlands, while conductivity, turbidity, chlorophyll a and phosphorous concentrations were higher downstream. We found clear diurnal cycling of dissolved oxygen and pH at both sites. These dynamics were correlated with seasonal hydroclimatic changes and stream metabolism, becoming increasingly pronounced as temperatures increased and flows decreased in spring and summer. Upstream of the wetlands this corresponded to the stream rapidly becoming increasingly heterotrophic as modelled Gross Primary Production (GPP) was exceeded by Ecosystem Respiration (ER). Downstream, where GPP was lower, the stream was usually strongly heterotrophic and prone to increasingly hypoxic conditions (i.e., insufficient oxygen) before streamflow ceased in summer. This coincided with lower velocities and deeper channels in beaver impacted areas. Seasonal and inter-annual variations in water quality were found to mainly correlate with hydroclimatic factors (particularly temperature) and their influence on streamflow. This study highlights that heterotrophy and hypoxia in lowland rivers in central Europe is an important seasonal feature of intermittent streams where agricultural landscapes continue leaching nutrients. These insights contribute to an evidence base for understanding how climate change will affect the quantity and quality of rural water resources in intermittent lowland streams with wetlands where the presence of beavers requires management responses.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信