The study of motion characteristics of detectors based on magnetic localization technology in a soft granule system

IF 2.4 3区 工程技术
Yu Pan, Quan Chen, Ran Li, Tongtong Mu, Haijun Gui, Ping Kong
{"title":"The study of motion characteristics of detectors based on magnetic localization technology in a soft granule system","authors":"Yu Pan,&nbsp;Quan Chen,&nbsp;Ran Li,&nbsp;Tongtong Mu,&nbsp;Haijun Gui,&nbsp;Ping Kong","doi":"10.1007/s10035-024-01491-7","DOIUrl":null,"url":null,"abstract":"<div><p>The motion of wireless capsule endoscopes (WCE) in the gastrointestinal tract is complex and variable. Measuring its motion patterns accurately is crucial for optimizing diagnostic, therapeutic procedures and improving diagnostic accuracy. To gain a deeper understanding of the motion patterns of WCE in the gastrointestinal tract, particularly its behavior in different regions. A simulation measurement system based on magnetic localization technology is proposed in a laboratory environment. We designed a cylindrical-conical-cylindrical structure simulation device. The free fall motion of soft hydrogel granules is designed to mimic fluid motion in the gastrointestinal tract. A hard-targeted pellet with a permanent magnet simulated the WCE. It measured parameters such as trajectory, vertical velocity, vertical acceleration, and attitude angle of the targeted pellet during its drop at different initial positions in a silo during unloading in a soft granules environment were measured. The experimental results reveal the motion characteristics of a hard pellet in a silo during unloading in a soft granules environment, in the specific wide channel region, as well as in the transition region from the wide channel to the narrow channel. These findings are valuable for understanding the complexity of flow behaviours in different regions of the soft granules environment. And, these findings provide data references for understanding the dynamic behavior of WCE in the gastrointestinal tract, thereby aiding in optimizing WCE design and enhancing its clinical efficacy.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01491-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The motion of wireless capsule endoscopes (WCE) in the gastrointestinal tract is complex and variable. Measuring its motion patterns accurately is crucial for optimizing diagnostic, therapeutic procedures and improving diagnostic accuracy. To gain a deeper understanding of the motion patterns of WCE in the gastrointestinal tract, particularly its behavior in different regions. A simulation measurement system based on magnetic localization technology is proposed in a laboratory environment. We designed a cylindrical-conical-cylindrical structure simulation device. The free fall motion of soft hydrogel granules is designed to mimic fluid motion in the gastrointestinal tract. A hard-targeted pellet with a permanent magnet simulated the WCE. It measured parameters such as trajectory, vertical velocity, vertical acceleration, and attitude angle of the targeted pellet during its drop at different initial positions in a silo during unloading in a soft granules environment were measured. The experimental results reveal the motion characteristics of a hard pellet in a silo during unloading in a soft granules environment, in the specific wide channel region, as well as in the transition region from the wide channel to the narrow channel. These findings are valuable for understanding the complexity of flow behaviours in different regions of the soft granules environment. And, these findings provide data references for understanding the dynamic behavior of WCE in the gastrointestinal tract, thereby aiding in optimizing WCE design and enhancing its clinical efficacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信