{"title":"Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing","authors":"Zheng Liu, De-Chun Ren, Lian-Min Zhang, Ai-Li Ma, Hai-Bin Ji, Yu-Gui Zheng","doi":"10.1007/s40195-024-01777-y","DOIUrl":null,"url":null,"abstract":"<div><p>Laser powder bed fusion (LPBF) technology offers a promising solution to the fabricability challenges of titanium alloys; however, it introduces defects such as porosity and cracking. Here, we evaluated the effectiveness of hot isostatic pressing (HIP) in eliminating defects and enhancing the overall properties of LPBF Ti-6Al-4V alloy. Our findings indicated that LPBF Ti-6Al-4V alloy after HIP established better corrosion resistance and ductility. These improvements could be related to the decomposition of αʹ phase and the elimination of internal defects within alloy matrix. Furthermore, the application prospect of LPBF Ti-6Al-4V alloy in spent fuel reprocessing environment was expounded.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 1","pages":"102 - 106"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01777-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Laser powder bed fusion (LPBF) technology offers a promising solution to the fabricability challenges of titanium alloys; however, it introduces defects such as porosity and cracking. Here, we evaluated the effectiveness of hot isostatic pressing (HIP) in eliminating defects and enhancing the overall properties of LPBF Ti-6Al-4V alloy. Our findings indicated that LPBF Ti-6Al-4V alloy after HIP established better corrosion resistance and ductility. These improvements could be related to the decomposition of αʹ phase and the elimination of internal defects within alloy matrix. Furthermore, the application prospect of LPBF Ti-6Al-4V alloy in spent fuel reprocessing environment was expounded.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.