{"title":"Solar-driven seawater desalination and electricity generation based on anisotropic graphene aerogel via unidirectional microfluidic transportation","authors":"Junhong Guo, Dong Li, Huanyu Zuo","doi":"10.1007/s00396-024-05340-0","DOIUrl":null,"url":null,"abstract":"<div><p>Solar-driven interface evaporation for steam and electricity co-generation is expected to simultaneously solve the shortage of freshwater and energy. Although many different solar-driven evaporators have been developed, the simultaneously achieving freshwater-electricity cogeneration at a steadily high efficiency remains a challenge. In this work, an anisotropic graphene aerogel (AGA) with vertically aligned microfluidic channels is synthesized by a directional-freezing method. By unidirectionally transporting the saline, the AGA not only shows stable steam generation but also generates continuous electricity due to the formation of an asymmetric electric double-layer. For seawater desalination, the evaporation rate reaches about 2.82 kg m<sup>−2</sup> h<sup>−1</sup> under one sun irradiation. And the evaporation performance has no obvious attenuation after long-term usage due to self-operating salt rejection. During the seawater evaporation, the AGA can generate output voltage of ca. 0.85 V and short-circuit current of 0.01 mA. The AGA has the advantages of strong light absorption, high photothermal conversion ability, low thermal conductivity, low-cost, excellent salt rejection ability, making it very attractive for practical applications. Therefore, this work will provide a new opportunity for simultaneous solar desalination and electricity generation under natural sunlight.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"303 2","pages":"219 - 228"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05340-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solar-driven interface evaporation for steam and electricity co-generation is expected to simultaneously solve the shortage of freshwater and energy. Although many different solar-driven evaporators have been developed, the simultaneously achieving freshwater-electricity cogeneration at a steadily high efficiency remains a challenge. In this work, an anisotropic graphene aerogel (AGA) with vertically aligned microfluidic channels is synthesized by a directional-freezing method. By unidirectionally transporting the saline, the AGA not only shows stable steam generation but also generates continuous electricity due to the formation of an asymmetric electric double-layer. For seawater desalination, the evaporation rate reaches about 2.82 kg m−2 h−1 under one sun irradiation. And the evaporation performance has no obvious attenuation after long-term usage due to self-operating salt rejection. During the seawater evaporation, the AGA can generate output voltage of ca. 0.85 V and short-circuit current of 0.01 mA. The AGA has the advantages of strong light absorption, high photothermal conversion ability, low thermal conductivity, low-cost, excellent salt rejection ability, making it very attractive for practical applications. Therefore, this work will provide a new opportunity for simultaneous solar desalination and electricity generation under natural sunlight.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.