Alexander Opazo-Vega, Alan Jara-Cisterna, Franco Benedetti, Mario Nuñez-Decap
{"title":"Estimation of the orthotropic elastic properties of reinforced LVL panels through vibration-based model updating techniques","authors":"Alexander Opazo-Vega, Alan Jara-Cisterna, Franco Benedetti, Mario Nuñez-Decap","doi":"10.1007/s00226-024-01627-1","DOIUrl":null,"url":null,"abstract":"<div><p>Laminated veneer lumber panels (LVL) are engineered wood products suitable for application in construction contexts. However, LVL panels have some deficient elastic properties (e.g., <span>\\({E}_{22}\\)</span>) concerning other elastic properties (e.g., <span>\\({E}_{11}\\)</span> and <span>\\({G}_{12}\\)</span>), which may cause problems in structural applications. Carbon and basalt fibers (CF and BF) are reinforcement alternatives for LVL panels, as they can be included in the interior or exterior wood veneer bonding process. This work aims to analyze the effect of incorporating CF and BF fibers in the orthotropic elastic properties of radiata pine LVL panels through a nondestructive method based on transverse vibration tests and model updating techniques. Accordingly, 20 LVL panels of 15 mm thickness were fabricated and tested with different reinforcing fibers and adhesives. Then, some relevant panels’ dynamic properties were identified through experimental modal analysis. Finally, three relevant panels’ orthotropic elastic properties were estimated simultaneously using finite-element model updating techniques and Python-based deterministic calibration scripts. The results suggest that the reinforced LVL panels obtained significant increases in their orthotropic elastic properties, in the order of 22%, 333%, and 27% for <span>\\({E}_{11}\\)</span>, <span>\\({E}_{22}\\)</span>, and <span>\\({G}_{12}\\)</span>, respectively. These results show the effectiveness of the type of reinforcement applied and the potential application of the nondestructive evaluation method in other contexts.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"59 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01627-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Laminated veneer lumber panels (LVL) are engineered wood products suitable for application in construction contexts. However, LVL panels have some deficient elastic properties (e.g., \({E}_{22}\)) concerning other elastic properties (e.g., \({E}_{11}\) and \({G}_{12}\)), which may cause problems in structural applications. Carbon and basalt fibers (CF and BF) are reinforcement alternatives for LVL panels, as they can be included in the interior or exterior wood veneer bonding process. This work aims to analyze the effect of incorporating CF and BF fibers in the orthotropic elastic properties of radiata pine LVL panels through a nondestructive method based on transverse vibration tests and model updating techniques. Accordingly, 20 LVL panels of 15 mm thickness were fabricated and tested with different reinforcing fibers and adhesives. Then, some relevant panels’ dynamic properties were identified through experimental modal analysis. Finally, three relevant panels’ orthotropic elastic properties were estimated simultaneously using finite-element model updating techniques and Python-based deterministic calibration scripts. The results suggest that the reinforced LVL panels obtained significant increases in their orthotropic elastic properties, in the order of 22%, 333%, and 27% for \({E}_{11}\), \({E}_{22}\), and \({G}_{12}\), respectively. These results show the effectiveness of the type of reinforcement applied and the potential application of the nondestructive evaluation method in other contexts.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.