{"title":"Coupling Derivation of Optimal-Order Central Moment Bounds in Exponential Last-Passage Percolation","authors":"Elnur Emrah, Nicos Georgiou, Janosch Ortmann","doi":"10.1007/s10955-025-03402-3","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce new probabilistic arguments to derive optimal-order central moment bounds in planar directed last-passage percolation. Our technique is based on couplings with the increment-stationary variants of the model, and is presented in the context of i.i.d. exponential weights for both zero and near-stationary boundary conditions. A main technical novelty in our approach is a new proof of the left-tail fluctuation upper bound with exponent 3/2 for the last-passage times.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03402-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03402-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce new probabilistic arguments to derive optimal-order central moment bounds in planar directed last-passage percolation. Our technique is based on couplings with the increment-stationary variants of the model, and is presented in the context of i.i.d. exponential weights for both zero and near-stationary boundary conditions. A main technical novelty in our approach is a new proof of the left-tail fluctuation upper bound with exponent 3/2 for the last-passage times.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.