Fabrication of NiO-ZrO2 nanoceramics: a prospective nanomaterial for protein harvesting from microbial cells

IF 3.674 4区 工程技术 Q1 Engineering
Neha, Manish Kumar, Divya Thakur, Sanjana Gupta, Deepak Dabur, Ravi Kant Bhatia, Maheshwar S. Thakur
{"title":"Fabrication of NiO-ZrO2 nanoceramics: a prospective nanomaterial for protein harvesting from microbial cells","authors":"Neha,&nbsp;Manish Kumar,&nbsp;Divya Thakur,&nbsp;Sanjana Gupta,&nbsp;Deepak Dabur,&nbsp;Ravi Kant Bhatia,&nbsp;Maheshwar S. Thakur","doi":"10.1007/s13204-025-03083-0","DOIUrl":null,"url":null,"abstract":"<div><p>Nanoceramics are distinguished by their exceptional mechanical qualities, including considerable strength, good toughness, and high fatigue resistance. Utilizing a green combustion technique, we successfully developed these nanoceramics and characterized them comprehensively using UV–Vis, XRD, EDAX, TEM, and XPS analyses. Our findings indicate the formation of nanocomposites with distinct cubic phases of NiO and ZrO<sub>2</sub>, confirming their polycrystalline nature through SAED and XRD. The developed nanoceramics were innovatively applied for bacterial cell lysis to extract intracellular components. Nevertheless, the previously published microbial cell lysis approaches are insufficient for cell disruption due to the cell firmness. Thus, a nanoceramic mediated protein harvesting methodology was proposed from <i>Bacillus subtilis</i> CP-66 cells and promising results (0.447 mg/ml) were obtained within 25–50 min of the abstraction process. This nanoceramic is also explored for their broad-spectrum antibacterial activity against three human pathogenic bacterial strains. This work highlights the many uses of our nanoceramic material in advanced materials science and emphasizes its potential in industrial and healthcare applications.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"15 1","pages":""},"PeriodicalIF":3.6740,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-025-03083-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoceramics are distinguished by their exceptional mechanical qualities, including considerable strength, good toughness, and high fatigue resistance. Utilizing a green combustion technique, we successfully developed these nanoceramics and characterized them comprehensively using UV–Vis, XRD, EDAX, TEM, and XPS analyses. Our findings indicate the formation of nanocomposites with distinct cubic phases of NiO and ZrO2, confirming their polycrystalline nature through SAED and XRD. The developed nanoceramics were innovatively applied for bacterial cell lysis to extract intracellular components. Nevertheless, the previously published microbial cell lysis approaches are insufficient for cell disruption due to the cell firmness. Thus, a nanoceramic mediated protein harvesting methodology was proposed from Bacillus subtilis CP-66 cells and promising results (0.447 mg/ml) were obtained within 25–50 min of the abstraction process. This nanoceramic is also explored for their broad-spectrum antibacterial activity against three human pathogenic bacterial strains. This work highlights the many uses of our nanoceramic material in advanced materials science and emphasizes its potential in industrial and healthcare applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Nanoscience
Applied Nanoscience Materials Science-Materials Science (miscellaneous)
CiteScore
7.10
自引率
0.00%
发文量
430
期刊介绍: Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信