Peeling an architected interface: roles of softness and fractoadhesive length in adhesion toughening

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zumrat Usmanova, Ruobing Bai
{"title":"Peeling an architected interface: roles of softness and fractoadhesive length in adhesion toughening","authors":"Zumrat Usmanova,&nbsp;Ruobing Bai","doi":"10.1007/s10704-024-00835-x","DOIUrl":null,"url":null,"abstract":"<div><p>Soft adhesion has been rapidly studied and developed for various applications in recent years. Compared to existing toughening mechanisms based on the adherend or adhesive materials themselves, building architectures or patterns in soft adhesion offers an attractive way of enhancing adhesion without modifying the intrinsic material properties. However, despite the recent progress in soft architected adhesion, the fundamental interplay between the geometry and material properties remains largely unexplored. This results in questions about the geometric conditions for effective toughening and the roles of intrinsic material parameters in governing these conditions. Here we explore the geometry-elasticity interplay in toughening a soft architected bilayer with one-dimensional rectangular interfacial pillars. Using finite element simulations on 90-degree peel, we investigate effects of the adherend modulus, pillar aspect ratio, and interfacial contact ratio on the peel strength. We show that compared to a uniform interface, soft interfacial pillars (shear modulus ~ 0.6 MPa) with a high aspect ratio (&gt; 4) can enhance the peel strength to more than 4 times, while stiff pillars (shear modulus ~ 1.5 MPa) only provide a limited enhancement (up to 1.5 times). Such enhancement is further amplified by increasing the interfacial contact ratio, where the best enhancement occurs when pillars are closely packed like a cross-cut surface (100% in contact yet architected). We develop a theory and scaling for the effective adhesion toughness and identify the fractoadhesive length of architected adhesion. We show that the fractoadhesive length provides a lower bound of the architecture feature size for effective toughening, while a large stretch at debonding in pillars further amplifies the toughening. Using an Ashby plot of the relevant architecture feature size and the fractoadhesive length in various architected adhesion systems, we conclude that macroscale architectures are necessary for effective toughening of soft adhesion with large fractoadhesive lengths.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00835-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00835-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soft adhesion has been rapidly studied and developed for various applications in recent years. Compared to existing toughening mechanisms based on the adherend or adhesive materials themselves, building architectures or patterns in soft adhesion offers an attractive way of enhancing adhesion without modifying the intrinsic material properties. However, despite the recent progress in soft architected adhesion, the fundamental interplay between the geometry and material properties remains largely unexplored. This results in questions about the geometric conditions for effective toughening and the roles of intrinsic material parameters in governing these conditions. Here we explore the geometry-elasticity interplay in toughening a soft architected bilayer with one-dimensional rectangular interfacial pillars. Using finite element simulations on 90-degree peel, we investigate effects of the adherend modulus, pillar aspect ratio, and interfacial contact ratio on the peel strength. We show that compared to a uniform interface, soft interfacial pillars (shear modulus ~ 0.6 MPa) with a high aspect ratio (> 4) can enhance the peel strength to more than 4 times, while stiff pillars (shear modulus ~ 1.5 MPa) only provide a limited enhancement (up to 1.5 times). Such enhancement is further amplified by increasing the interfacial contact ratio, where the best enhancement occurs when pillars are closely packed like a cross-cut surface (100% in contact yet architected). We develop a theory and scaling for the effective adhesion toughness and identify the fractoadhesive length of architected adhesion. We show that the fractoadhesive length provides a lower bound of the architecture feature size for effective toughening, while a large stretch at debonding in pillars further amplifies the toughening. Using an Ashby plot of the relevant architecture feature size and the fractoadhesive length in various architected adhesion systems, we conclude that macroscale architectures are necessary for effective toughening of soft adhesion with large fractoadhesive lengths.

剥离和结构界面:柔软度和断裂胶粘剂长度在粘合增韧中的作用
近年来,软粘接技术在各种应用领域得到了迅速的研究和发展。与现有的基于粘附物或粘附材料本身的增韧机制相比,在软粘附中构建结构或模式提供了一种有吸引力的方法,可以在不改变材料固有特性的情况下增强粘附性。然而,尽管最近在软结构粘合方面取得了进展,但几何形状和材料性能之间的基本相互作用在很大程度上仍未被探索。这就产生了关于有效增韧的几何条件和控制这些条件的固有材料参数的作用的问题。在这里,我们探讨了几何弹性在增韧具有一维矩形界面柱的软结构双层中的相互作用。通过90度剥离的有限元模拟,我们研究了附着模量、柱长径比和界面接触比对剥离强度的影响。研究表明,与均匀界面相比,高纵横比(> 4)的软质界面柱(剪切模量~ 0.6 MPa)可以将剥离强度提高4倍以上,而刚性界面柱(剪切模量~ 1.5 MPa)只能提供有限的增强(最多1.5倍)。界面接触比的增加进一步放大了这种增强效果,当柱状体紧密排列成一个横切面(100%接触但仍有结构)时,这种增强效果最好。我们建立了有效粘接韧性的理论和标度,并确定了结构粘接的断裂粘接长度。我们发现,断裂胶粘剂长度为有效增韧提供了结构特征尺寸的下界,而柱中脱粘时的大拉伸进一步放大了增韧。利用不同体系结构中相关体系结构特征尺寸和断裂胶长度的Ashby图,我们得出结论,宏观体系结构对于大断裂胶长度的软粘接的有效增韧是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信