{"title":"Unveiling Water Adsorption Dynamics on N and Br-Modified Anatase TiO₂ (101) Surfaces: A DFT Study","authors":"Asad Mahmood","doi":"10.1007/s10562-025-04941-w","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding water adsorption on catalyst surfaces through DFT studies is essential for uncovering interaction mechanisms and enhancing surface reactivity. Defect modulation in oxide-based semiconductors like TiO₂ is pivotal for applications in catalysis, geophysics, and biochemistry. This study uses periodic DFT calculations to investigate water adsorption on Br- and N-doped TiO₂ (101) surfaces. The results indicate that Br and N doping enhances surface reactivity, yielding higher adsorption energy of -0.873 eV for a single water molecule compared to -0.654 eV for undoped TiO₂. An increase in the number of water molecules leads to cluster formation on the modified surface, demonstrating improved adsorption capability. Moreover, Br and N dopants facilitate water dissociation, suggesting an elevated radical’s production. This study is significant as it deepens our understanding of the surface behavior of doped oxide materials, i.e., TiO<sub>2</sub>, paving the way for enhanced insights into their catalytic properties and potential applications in heterogeneous catalysis.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-04941-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding water adsorption on catalyst surfaces through DFT studies is essential for uncovering interaction mechanisms and enhancing surface reactivity. Defect modulation in oxide-based semiconductors like TiO₂ is pivotal for applications in catalysis, geophysics, and biochemistry. This study uses periodic DFT calculations to investigate water adsorption on Br- and N-doped TiO₂ (101) surfaces. The results indicate that Br and N doping enhances surface reactivity, yielding higher adsorption energy of -0.873 eV for a single water molecule compared to -0.654 eV for undoped TiO₂. An increase in the number of water molecules leads to cluster formation on the modified surface, demonstrating improved adsorption capability. Moreover, Br and N dopants facilitate water dissociation, suggesting an elevated radical’s production. This study is significant as it deepens our understanding of the surface behavior of doped oxide materials, i.e., TiO2, paving the way for enhanced insights into their catalytic properties and potential applications in heterogeneous catalysis.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.