Enhancing Solar Energy-Driven Photocatalytic Water Splitting Reaction Over Znln2S4 by N Doping

IF 2.3 4区 化学 Q3 CHEMISTRY, PHYSICAL
Nasim Mia, Yulin Hu
{"title":"Enhancing Solar Energy-Driven Photocatalytic Water Splitting Reaction Over Znln2S4 by N Doping","authors":"Nasim Mia,&nbsp;Yulin Hu","doi":"10.1007/s10562-025-04950-9","DOIUrl":null,"url":null,"abstract":"<div><p>The solar energy-driven photocatalytic H<sub>2</sub> production from water plays a critical role in achieving decarbonization. One of the key factors determining the water splitting efficiency is the selection of highly effective and stable photocatalysts. Recently, ZnIn<sub>2</sub>S<sub>4</sub> (ZIS) based photocatalysts have attracted a great deal of attention due to smaller bandgaps, great light harvesting ability, less toxicity, and ease of fabrication. Therefore, in this study, pristine ZIS and N-doped ZIS (N-ZIS) photocatalysts were synthesized, followed by the investigation of the water splitting reaction under different reaction conditions (e.g., photocatalyst concentration and type and dosage of sacrificial agent). Afterward, the stability of the photocatalyst and sacrificial agent was explored. The results showed that N doping enhanced the evolution of total gases via water splitting reaction. The maximum amount of total gases of 17,559 µmol/g<sub>catalyst</sub> was produced at 5mg<sub>N − ZIS</sub>/35ml<sub>reaction medium</sub>, methanol as the sacrificial agent, 15 vol% methanol addition for 2 h reaction time. In the stability study of N-ZIS and methanol, a decrease of 6.67% and 29.03% was observed at 3rd cycle, respectively. Overall, the present work provides new insights and knowledge into photocatalytic water splitting over N doping technique for ZIS-based photocatalysts.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-025-04950-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The solar energy-driven photocatalytic H2 production from water plays a critical role in achieving decarbonization. One of the key factors determining the water splitting efficiency is the selection of highly effective and stable photocatalysts. Recently, ZnIn2S4 (ZIS) based photocatalysts have attracted a great deal of attention due to smaller bandgaps, great light harvesting ability, less toxicity, and ease of fabrication. Therefore, in this study, pristine ZIS and N-doped ZIS (N-ZIS) photocatalysts were synthesized, followed by the investigation of the water splitting reaction under different reaction conditions (e.g., photocatalyst concentration and type and dosage of sacrificial agent). Afterward, the stability of the photocatalyst and sacrificial agent was explored. The results showed that N doping enhanced the evolution of total gases via water splitting reaction. The maximum amount of total gases of 17,559 µmol/gcatalyst was produced at 5mgN − ZIS/35mlreaction medium, methanol as the sacrificial agent, 15 vol% methanol addition for 2 h reaction time. In the stability study of N-ZIS and methanol, a decrease of 6.67% and 29.03% was observed at 3rd cycle, respectively. Overall, the present work provides new insights and knowledge into photocatalytic water splitting over N doping technique for ZIS-based photocatalysts.

Graphical abstract

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Letters
Catalysis Letters 化学-物理化学
CiteScore
5.70
自引率
3.60%
发文量
327
审稿时长
1 months
期刊介绍: Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis. The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信