Natural cellulose fibers from Agave Americana L. ASPARAGACEAE as an effective adsorbent for mercury in aqueous solutions

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Hugo Sánchez-Moreno, Lourdes García-Rodríguez, Celso Recalde-Moreno
{"title":"Natural cellulose fibers from Agave Americana L. ASPARAGACEAE as an effective adsorbent for mercury in aqueous solutions","authors":"Hugo Sánchez-Moreno,&nbsp;Lourdes García-Rodríguez,&nbsp;Celso Recalde-Moreno","doi":"10.1007/s10450-024-00590-4","DOIUrl":null,"url":null,"abstract":"<div><p> This study investigated the use of functionalized cabuya fibers (FCF) as an effective adsorbent for Hg (II) removal from aqueous solutions. The composition, surface properties, and morphology of the FCF were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR). The effects of the pH, contact time, temperature, adsorbent dosage, and initial Hg (II) concentration on the adsorption process were studied. Under optimized experimental conditions, FCF achieved a removal efficiency exceeding 92%, with a maximum adsorption capacity of 8.29 mg/g. The experimental data for the FCF isotherm were analyzed using the Langmuir, Freundlich, DR, and Temkin adsorption models. Notably, the Langmuir isotherm exhibited the highest R² value of 0.99, indicating the model’s strong applicability. The pseudo-second-order kinetic model k<sub>2</sub> = 0.42 mg/g.min was employed to elucidate the adsorption mechanism. Thermodynamic studies of the adsorbent FCF were conducted, and ΔG° (-6.16 kJ/mol), ΔH° (36.29 kJ/mol), and ΔS° (141.98 kJ/mol·K) were calculated, assessing the feasibility of the process. Additionally, the desorption results of FCF were evaluated, demonstrating that it can be reused for up to three cycles, achieving adsorption rates of 74% and 62% in the third cycle. This indicates its stability and recycling capacity. Finally, the effectiveness of the FCF was demonstrated by eliminating approximately 91% of Hg (II) from real mineral water samples in Ecuador. These results highlight the p of FCF as promising, eco-friendly, and sustainable adsorbents for the remediation of Hg (II) contamination in aquatic systems.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-024-00590-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00590-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the use of functionalized cabuya fibers (FCF) as an effective adsorbent for Hg (II) removal from aqueous solutions. The composition, surface properties, and morphology of the FCF were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR). The effects of the pH, contact time, temperature, adsorbent dosage, and initial Hg (II) concentration on the adsorption process were studied. Under optimized experimental conditions, FCF achieved a removal efficiency exceeding 92%, with a maximum adsorption capacity of 8.29 mg/g. The experimental data for the FCF isotherm were analyzed using the Langmuir, Freundlich, DR, and Temkin adsorption models. Notably, the Langmuir isotherm exhibited the highest R² value of 0.99, indicating the model’s strong applicability. The pseudo-second-order kinetic model k2 = 0.42 mg/g.min was employed to elucidate the adsorption mechanism. Thermodynamic studies of the adsorbent FCF were conducted, and ΔG° (-6.16 kJ/mol), ΔH° (36.29 kJ/mol), and ΔS° (141.98 kJ/mol·K) were calculated, assessing the feasibility of the process. Additionally, the desorption results of FCF were evaluated, demonstrating that it can be reused for up to three cycles, achieving adsorption rates of 74% and 62% in the third cycle. This indicates its stability and recycling capacity. Finally, the effectiveness of the FCF was demonstrated by eliminating approximately 91% of Hg (II) from real mineral water samples in Ecuador. These results highlight the p of FCF as promising, eco-friendly, and sustainable adsorbents for the remediation of Hg (II) contamination in aquatic systems.

龙舌兰美洲L.天门冬科天然纤维素纤维对汞的有效吸附剂
本研究研究了功能化灯叶纤维(FCF)作为一种有效的吸附剂去除水中的汞(II)。利用扫描电子显微镜(SEM)、x射线能谱仪(EDS)和傅里叶变换红外光谱(FTIR)对FCF的组成、表面性能和形貌进行了表征。研究了pH、接触时间、温度、吸附剂投加量和初始Hg (II)浓度对吸附过程的影响。在优化的实验条件下,FCF的去除率超过92%,最大吸附量为8.29 mg/g。采用Langmuir、Freundlich、DR和Temkin吸附模型对FCF等温线的实验数据进行分析。Langmuir等温线的R²值最高,为0.99,说明该模型具有较强的适用性。拟二级动力学模型k2 = 0.42 mg/g。用Min来阐明吸附机理。对吸附剂FCF进行了热力学研究,计算了ΔG°(-6.16 kJ/mol)、ΔH°(36.29 kJ/mol)和ΔS°(141.98 kJ/mol·K),评价了该工艺的可行性。此外,对FCF的解吸效果进行了评价,表明其可重复使用3个循环,在第三个循环中吸附率分别达到74%和62%。这表明它的稳定性和回收能力。最后,通过从厄瓜多尔的真实矿泉水样品中去除约91%的汞(II),证明了FCF的有效性。这些结果突出表明,FCF是一种有前途的、生态友好的、可持续的吸附剂,可用于修复水生系统中的汞(II)污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信