Low-loss all-fiber inline polarizer based on graphene oxide and nanogold film composite structure

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongjing Fan, Wenxin Wang, Ping Li, Guohui Lyu
{"title":"Low-loss all-fiber inline polarizer based on graphene oxide and nanogold film composite structure","authors":"Hongjing Fan,&nbsp;Wenxin Wang,&nbsp;Ping Li,&nbsp;Guohui Lyu","doi":"10.1007/s11082-025-08064-9","DOIUrl":null,"url":null,"abstract":"<div><p>The all-fiber inline polarizer (AFILP) is gaining prominence in fiber optic sensing and laser technologies due to its compact design and strong resistance to interference. However, its further development is hindered by the issue of optical loss. To address this challenge, we propose a low-loss AFILP that incorporates a composite structure of graphene oxide and nanogold film, applied to D-shaped fibers polished to varying depths. Experimental results demonstrate that the polarization extinction ratio (PER) and the insertion loss (IL) of the transmitted polarization in a nanogold-coated D-shaped fiber are positively correlated with the distance from the fiber core at specific polishing depths. For instance, at a distance of 4 µm from the fiber core center, the PER reached 38.82 dB, while the IL was 2.831 dB. Notably, at the same polishing depth, the all-fiber polarizer incorporating a composite structure of graphene oxide and nanogold film exhibited a PER of 36.65 dB, along with an exceptionally low IL of 0.2 dB, corresponding to the loss of the transmitted polarization.These findings suggest that the composite structure effectively reduces insertion loss while maintaining high PER, offering significant potential for enhancing AFILP performance. Additionally, the graphene oxide layer was formed by drying a graphene oxide dispersion, providing a cost-effective and straightforward alternative to traditional graphene coating methods.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08064-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The all-fiber inline polarizer (AFILP) is gaining prominence in fiber optic sensing and laser technologies due to its compact design and strong resistance to interference. However, its further development is hindered by the issue of optical loss. To address this challenge, we propose a low-loss AFILP that incorporates a composite structure of graphene oxide and nanogold film, applied to D-shaped fibers polished to varying depths. Experimental results demonstrate that the polarization extinction ratio (PER) and the insertion loss (IL) of the transmitted polarization in a nanogold-coated D-shaped fiber are positively correlated with the distance from the fiber core at specific polishing depths. For instance, at a distance of 4 µm from the fiber core center, the PER reached 38.82 dB, while the IL was 2.831 dB. Notably, at the same polishing depth, the all-fiber polarizer incorporating a composite structure of graphene oxide and nanogold film exhibited a PER of 36.65 dB, along with an exceptionally low IL of 0.2 dB, corresponding to the loss of the transmitted polarization.These findings suggest that the composite structure effectively reduces insertion loss while maintaining high PER, offering significant potential for enhancing AFILP performance. Additionally, the graphene oxide layer was formed by drying a graphene oxide dispersion, providing a cost-effective and straightforward alternative to traditional graphene coating methods.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信