Raghav Dwivedi, D. K. Srivastava, Vinod Kumar Singh
{"title":"Innovative wearable textile antenna for holistic prognostic medical applications and perpetual vital signs surveillance of human physiology","authors":"Raghav Dwivedi, D. K. Srivastava, Vinod Kumar Singh","doi":"10.1007/s11082-025-08040-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a revolutionary breakthrough in wearable antenna technology through an ingeniously engineered arrowhead-shaped textile butterfly design, fabricated on an eco-friendly jean’s substrate marking a paradigm shift in flexible electronics and communication networks. This textile antenna's distinctive morphology transcends conventional designs by seamlessly fusing biomimetic principles with cutting-edge electromagnetic architecture for wearable antenna applications, delivering unprecedented flexibility and conformability while maintaining superior performance metrics. Rigorous electromagnetic simulations and prototype validation demonstrate exceptional results: an ultra-wideband frequency response spanning 2.359–16.76 GHz, coupled with a remarkable peak gain of 6.9 dB and a ground-breaking bandwidth enhancement of 150.64%. The antenna's biomimetic butterfly topology revolutionizes omnidirectional connectivity while achieving unprecedented miniaturization, making it ideal for vital sign monitoring systems. Most significantly, the design incorporates an innovative electromagnetic field distribution technique that yields exceptionally low Specific Absorption Rate values, surpassing FCC safety standards. This breakthrough enables transformative applications in clairvoyant medical monitoring, facilitating next-generation vital sign monitoring with zero-latency data transmission and minimal electromagnetic interference, thereby pioneering new frontiers in personalized healthcare diagnostics and real-time patient monitoring systems. The integration of flexible electronics with this innovative textile antenna design represents a significant advancement in wearable technology, offering robust solutions for future healthcare applications.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08040-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a revolutionary breakthrough in wearable antenna technology through an ingeniously engineered arrowhead-shaped textile butterfly design, fabricated on an eco-friendly jean’s substrate marking a paradigm shift in flexible electronics and communication networks. This textile antenna's distinctive morphology transcends conventional designs by seamlessly fusing biomimetic principles with cutting-edge electromagnetic architecture for wearable antenna applications, delivering unprecedented flexibility and conformability while maintaining superior performance metrics. Rigorous electromagnetic simulations and prototype validation demonstrate exceptional results: an ultra-wideband frequency response spanning 2.359–16.76 GHz, coupled with a remarkable peak gain of 6.9 dB and a ground-breaking bandwidth enhancement of 150.64%. The antenna's biomimetic butterfly topology revolutionizes omnidirectional connectivity while achieving unprecedented miniaturization, making it ideal for vital sign monitoring systems. Most significantly, the design incorporates an innovative electromagnetic field distribution technique that yields exceptionally low Specific Absorption Rate values, surpassing FCC safety standards. This breakthrough enables transformative applications in clairvoyant medical monitoring, facilitating next-generation vital sign monitoring with zero-latency data transmission and minimal electromagnetic interference, thereby pioneering new frontiers in personalized healthcare diagnostics and real-time patient monitoring systems. The integration of flexible electronics with this innovative textile antenna design represents a significant advancement in wearable technology, offering robust solutions for future healthcare applications.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.