Potts Partition Function Zeros and Ground State Entropy on Hanoi Graphs

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Shu-Chiuan Chang, Robert Shrock
{"title":"Potts Partition Function Zeros and Ground State Entropy on Hanoi Graphs","authors":"Shu-Chiuan Chang,&nbsp;Robert Shrock","doi":"10.1007/s10955-025-03398-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study properties of the Potts model partition function <span>\\(Z(H_m,q,v)\\)</span> on <i>m</i>’th iterates of Hanoi graphs, <span>\\(H_m\\)</span>, and use the results to draw inferences about the <span>\\(m \\rightarrow \\infty \\)</span> limit that yields a self-similar Hanoi fractal, <span>\\(H_\\infty \\)</span>. We also calculate the chromatic polynomials <span>\\(P(H_m,q)=Z(H_m,q,-1)\\)</span>. From calculations of the configurational degeneracy, per vertex, of the zero-temperature Potts antiferromagnet on <span>\\(H_m\\)</span>, denoted <span>\\(W(H_m,q)\\)</span>, estimates of <span>\\(W(H_\\infty ,q)\\)</span>, are given for <span>\\(q=3\\)</span> and <span>\\(q=4\\)</span> and compared with known values on other lattices. We compute the zeros of <span>\\(Z(H_m,q,v)\\)</span> in the complex <i>q</i> plane for various values of the temperature-dependent variable <span>\\(v=y-1\\)</span> and in the complex <i>y</i> plane for various values of <i>q</i>. These are consistent with accumulating to form loci denoted <span>\\(\\mathcal{B}_q(v)\\)</span> and <span>\\(\\mathcal{B}_v(q)\\)</span>, or equivalently, <span>\\(\\mathcal{B}_y(q)\\)</span>, in the <span>\\(m \\rightarrow \\infty \\)</span> limit. Our results motivate the inference that the maximal point at which <span>\\(\\mathcal{B}_q(-1)\\)</span> crosses the real <i>q</i> axis, denoted <span>\\(q_c\\)</span>, has the value <span>\\(q_c=(1/2)(3+\\sqrt{5})\\)</span> and correspondingly, if <span>\\(q=q_c\\)</span>, then <span>\\(\\mathcal{B}_y(q_c)\\)</span> crosses the real <i>y</i> axis at <span>\\(y=0\\)</span>, i.e., the Potts antiferromagnet on <span>\\(H_\\infty \\)</span> with <span>\\(q=(1/2)(3+\\sqrt{5})\\)</span> has a <span>\\(T=0\\)</span> critical point. Finally, we analyze the partition function zeros in the <i>y</i> plane for <span>\\(q \\gg 1\\)</span> and show that these accumulate approximately along parts of the sides of an equilateral triangular with apex points that scale like <span>\\(y \\sim q^{2/3}\\)</span> and <span>\\(y \\sim q^{2/3} e^{\\pm 2\\pi i/3}\\)</span>. Some comparisons are presented of these findings for Hanoi graphs with corresponding results on <i>m</i>’th iterates of Sierpinski gasket graphs and the <span>\\(m \\rightarrow \\infty \\)</span> limit yielding the Sierpinski gasket fractal.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03398-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study properties of the Potts model partition function \(Z(H_m,q,v)\) on m’th iterates of Hanoi graphs, \(H_m\), and use the results to draw inferences about the \(m \rightarrow \infty \) limit that yields a self-similar Hanoi fractal, \(H_\infty \). We also calculate the chromatic polynomials \(P(H_m,q)=Z(H_m,q,-1)\). From calculations of the configurational degeneracy, per vertex, of the zero-temperature Potts antiferromagnet on \(H_m\), denoted \(W(H_m,q)\), estimates of \(W(H_\infty ,q)\), are given for \(q=3\) and \(q=4\) and compared with known values on other lattices. We compute the zeros of \(Z(H_m,q,v)\) in the complex q plane for various values of the temperature-dependent variable \(v=y-1\) and in the complex y plane for various values of q. These are consistent with accumulating to form loci denoted \(\mathcal{B}_q(v)\) and \(\mathcal{B}_v(q)\), or equivalently, \(\mathcal{B}_y(q)\), in the \(m \rightarrow \infty \) limit. Our results motivate the inference that the maximal point at which \(\mathcal{B}_q(-1)\) crosses the real q axis, denoted \(q_c\), has the value \(q_c=(1/2)(3+\sqrt{5})\) and correspondingly, if \(q=q_c\), then \(\mathcal{B}_y(q_c)\) crosses the real y axis at \(y=0\), i.e., the Potts antiferromagnet on \(H_\infty \) with \(q=(1/2)(3+\sqrt{5})\) has a \(T=0\) critical point. Finally, we analyze the partition function zeros in the y plane for \(q \gg 1\) and show that these accumulate approximately along parts of the sides of an equilateral triangular with apex points that scale like \(y \sim q^{2/3}\) and \(y \sim q^{2/3} e^{\pm 2\pi i/3}\). Some comparisons are presented of these findings for Hanoi graphs with corresponding results on m’th iterates of Sierpinski gasket graphs and the \(m \rightarrow \infty \) limit yielding the Sierpinski gasket fractal.

Abstract Image

河内图上的波特配分函数零点和基态熵
我们研究了Potts模型配分函数\(Z(H_m,q,v)\)在Hanoi图(\(H_m\))的第m次迭代上的性质,并使用结果得出关于\(m \rightarrow \infty \)极限的推论,该极限产生自相似的Hanoi分形(\(H_\infty \))。我们还计算了色多项式\(P(H_m,q)=Z(H_m,q,-1)\)。通过计算\(H_m\)(记为\(W(H_m,q)\))上零温度波茨反铁磁体的每个顶点的构型简并,给出了\(q=3\)和\(q=4\)上的\(W(H_\infty ,q)\)的估计,并与其他晶格上的已知值进行了比较。对于温度相关变量\(v=y-1\)的各种值,我们在复q平面中计算\(Z(H_m,q,v)\)的零点,对于q的各种值,我们在复y平面中计算零点。这些与累积形成的位点一致,表示为\(\mathcal{B}_q(v)\)和\(\mathcal{B}_v(q)\),或者在\(m \rightarrow \infty \)极限中等价地表示为\(\mathcal{B}_y(q)\)。我们的结果推导出\(\mathcal{B}_q(-1)\)与实q轴相交的最大值点(记为\(q_c\))值为\(q_c=(1/2)(3+\sqrt{5})\),相应地,如果\(q=q_c\),则\(\mathcal{B}_y(q_c)\)与实y轴相交的值为\(y=0\),即\(H_\infty \)与\(q=(1/2)(3+\sqrt{5})\)上的Potts反铁磁体存在\(T=0\)临界点。最后,我们分析了\(q \gg 1\)在y平面上的配分函数零点,并表明这些零点大约沿着等边三角形的部分边累积,顶点的尺度类似\(y \sim q^{2/3}\)和\(y \sim q^{2/3} e^{\pm 2\pi i/3}\)。本文将这些发现与Sierpinski垫片图的第m次迭代的相应结果以及产生Sierpinski垫片分形的\(m \rightarrow \infty \)极限进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信