Green Hydrogen Production from Ethanol Electrolysis Using Co/Ni Bimetallic Nanoparticles-Incorporated Carbon Nanofibers

IF 0.6 4区 化学 Q4 CHEMISTRY, APPLIED
Nasser A. M. Barakat, Taha E. Farrag, Mohamed S. Mahmoud
{"title":"Green Hydrogen Production from Ethanol Electrolysis Using Co/Ni Bimetallic Nanoparticles-Incorporated Carbon Nanofibers","authors":"Nasser A. M. Barakat,&nbsp;Taha E. Farrag,&nbsp;Mohamed S. Mahmoud","doi":"10.1134/S1070427224060065","DOIUrl":null,"url":null,"abstract":"<p>This manuscript presents a novel approach for green hydrogen production through ethanol electrolysis using Co/Ni bimetallic nanoparticles-incorporated carbon nanofibers (CNFs). The synthesis method involves the electrospinning of a sol-gel comprising nickel acetate, cobalt acetate, and poly(vinyl alcohol), followed by vacuum drying at 60°C overnight and subsequent calcination in a vacuum atmosphere. X-ray diffraction (XRD) analysis revealed the decomposition of acetate precursors, resulting in the formation of zero-valent metal nanoparticles (NPs). Transmission electron microscopy (TEM) confirmed the alloy composition of the NPs. Electrochemical measurements demonstrated the effective utilization of the proposed nanofibers as anode materials in ethanol electrooxidation reactions for hydrogen production at low voltage. Optimization of the metallic nanoparticle composition was found to significantly enhance performance. For instance, Ni- and Ni<sub>0.9</sub>Co<sub>0.1</sub>-doped CNFs exhibited current densities of 37 and 142 mA/cm<sup>2</sup>, respectively. Especially, Ni<sub>0.1</sub>Co<sub>0.9</sub>-doped CNFs displayed a remarkably low onset potential of -50 mV vs. Ag/AgCl. Moreover, Ni<sub>0.9</sub>Co<sub>0.1</sub>-doped CNFs exhibited the ability to recover hydrogen from ethanol solutions from 0.1 to 5 M, attributed to the observed active layer regeneration. The versatility of ethanol as a feedstock, derived from biomass fermentation, positions the proposed anode materials as sustainable catalysts for green hydrogen production from agricultural sources. This work underscores the potential of Co/Ni bimetallic nanoparticles-incorporated CNFs in advancing the field of renewable energy and promoting sustainable H<sub>2</sub> generation.</p>","PeriodicalId":757,"journal":{"name":"Russian Journal of Applied Chemistry","volume":"97 6","pages":"572 - 581"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1070427224060065","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript presents a novel approach for green hydrogen production through ethanol electrolysis using Co/Ni bimetallic nanoparticles-incorporated carbon nanofibers (CNFs). The synthesis method involves the electrospinning of a sol-gel comprising nickel acetate, cobalt acetate, and poly(vinyl alcohol), followed by vacuum drying at 60°C overnight and subsequent calcination in a vacuum atmosphere. X-ray diffraction (XRD) analysis revealed the decomposition of acetate precursors, resulting in the formation of zero-valent metal nanoparticles (NPs). Transmission electron microscopy (TEM) confirmed the alloy composition of the NPs. Electrochemical measurements demonstrated the effective utilization of the proposed nanofibers as anode materials in ethanol electrooxidation reactions for hydrogen production at low voltage. Optimization of the metallic nanoparticle composition was found to significantly enhance performance. For instance, Ni- and Ni0.9Co0.1-doped CNFs exhibited current densities of 37 and 142 mA/cm2, respectively. Especially, Ni0.1Co0.9-doped CNFs displayed a remarkably low onset potential of -50 mV vs. Ag/AgCl. Moreover, Ni0.9Co0.1-doped CNFs exhibited the ability to recover hydrogen from ethanol solutions from 0.1 to 5 M, attributed to the observed active layer regeneration. The versatility of ethanol as a feedstock, derived from biomass fermentation, positions the proposed anode materials as sustainable catalysts for green hydrogen production from agricultural sources. This work underscores the potential of Co/Ni bimetallic nanoparticles-incorporated CNFs in advancing the field of renewable energy and promoting sustainable H2 generation.

Abstract Image

Co/Ni双金属纳米颗粒复合纳米碳纤维乙醇电解绿色制氢研究
本文提出了一种利用Co/Ni双金属纳米颗粒结合碳纳米纤维(CNFs)通过乙醇电解绿色制氢的新方法。该合成方法包括静电纺丝一种由醋酸镍、醋酸钴和聚乙烯醇组成的溶胶-凝胶,然后在60°C真空干燥过夜,随后在真空气氛中煅烧。x射线衍射(XRD)分析显示乙酸酯前驱体分解,形成零价金属纳米颗粒(NPs)。透射电镜(TEM)证实了NPs的合金成分。电化学测试表明,纳米纤维在低压乙醇电氧化制氢反应中作为阳极材料是有效的。优化金属纳米颗粒的组成可以显著提高性能。例如,Ni-和ni0.9 co0.1掺杂的CNFs的电流密度分别为37和142 mA/cm2。特别是,ni0.1 co0.9掺杂的CNFs相对于Ag/AgCl表现出-50 mV的非常低的起始电位。此外,ni0.9 co0.1掺杂的CNFs表现出从0.1 ~ 5 M的乙醇溶液中回收氢的能力,这归因于观察到的活性层再生。乙醇作为原料的多功能性,来源于生物质发酵,将所提出的阳极材料定位为可持续的催化剂,用于农业来源的绿色制氢。这项工作强调了Co/Ni双金属纳米颗粒- CNFs在推进可再生能源领域和促进可持续制氢方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
63
审稿时长
2-4 weeks
期刊介绍: Russian Journal of Applied Chemistry (Zhurnal prikladnoi khimii) was founded in 1928. It covers all application problems of modern chemistry, including the structure of inorganic and organic compounds, kinetics and mechanisms of chemical reactions, problems of chemical processes and apparatus, borderline problems of chemistry, and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信