Selective catalytic oxidation of toluene with O2 to benzyl alcohol and benzaldehyde over bimetallic NiCu/MgAlO catalyst in solvent-free and additive-free conditions
{"title":"Selective catalytic oxidation of toluene with O2 to benzyl alcohol and benzaldehyde over bimetallic NiCu/MgAlO catalyst in solvent-free and additive-free conditions","authors":"Jiaqi Yan, Gui Chen, Sihang Lu, Pin Wang, Zhengwu Hu, Wenkai Chen, Ye Yuan","doi":"10.1007/s11164-024-05482-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a stable bimetallic hydrotalcite-derived NiCu/MgAlO catalyst and O<sub>2</sub> as oxidant were used for the toluene oxidation to produce the valuable benzyl alcohol (PhCH<sub>2</sub>OH) and benzaldehyde (PhCHO) under solvent-free and additive-free conditions. This strategy gave 7.2% toluene conversion with 70.7% selectivity to PhCH<sub>2</sub>OH & PhCHO. Multiple characterizations showed that highly dispersed metallic Cu and Ni were anchored on the support surface and a chemical bonding interaction occurred between the metallic Ni and the MgAlO. The metal–support interaction contributed to the formation of active Ni<sup>0</sup> species and NiCu alloy with abundant oxygen defects, resulting in excellent catalytic activity and acceptable stability. A plausible reaction mechanism for the catalytic oxidation of toluene over NiCu/MgAlO catalyst has been proposed. The attractive feature of the present catalytic oxidation system compared to conventional methods was its ability to achieve high selectivity for the desired target product. The further advantage of NiCu/MgAlO catalyzed toluene oxidation was that the reaction temperature and time could be below 180 °C and 2 h, thereby minimizing energy consumption and reducing effluent wastewater, which has potential application prospects.</p></div>","PeriodicalId":753,"journal":{"name":"Research on Chemical Intermediates","volume":"51 2","pages":"657 - 674"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research on Chemical Intermediates","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11164-024-05482-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a stable bimetallic hydrotalcite-derived NiCu/MgAlO catalyst and O2 as oxidant were used for the toluene oxidation to produce the valuable benzyl alcohol (PhCH2OH) and benzaldehyde (PhCHO) under solvent-free and additive-free conditions. This strategy gave 7.2% toluene conversion with 70.7% selectivity to PhCH2OH & PhCHO. Multiple characterizations showed that highly dispersed metallic Cu and Ni were anchored on the support surface and a chemical bonding interaction occurred between the metallic Ni and the MgAlO. The metal–support interaction contributed to the formation of active Ni0 species and NiCu alloy with abundant oxygen defects, resulting in excellent catalytic activity and acceptable stability. A plausible reaction mechanism for the catalytic oxidation of toluene over NiCu/MgAlO catalyst has been proposed. The attractive feature of the present catalytic oxidation system compared to conventional methods was its ability to achieve high selectivity for the desired target product. The further advantage of NiCu/MgAlO catalyzed toluene oxidation was that the reaction temperature and time could be below 180 °C and 2 h, thereby minimizing energy consumption and reducing effluent wastewater, which has potential application prospects.
期刊介绍:
Research on Chemical Intermediates publishes current research articles and concise dynamic reviews on the properties, structures and reactivities of intermediate species in all the various domains of chemistry.
The journal also contains articles in related disciplines such as spectroscopy, molecular biology and biochemistry, atmospheric and environmental sciences, catalysis, photochemistry and photophysics. In addition, special issues dedicated to specific topics in the field are regularly published.