Application of micro-CT and digital volume correlation for investigating the macro-/mesoscopic failure mechanism of shale under uniaxial loading: insights into fracture behavior relevant to shale gas recovery

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Yingjie Li, Liang Zhang, Dejun Liu, Jianping Zuo, Shengxin Liu, Haiyang Dong
{"title":"Application of micro-CT and digital volume correlation for investigating the macro-/mesoscopic failure mechanism of shale under uniaxial loading: insights into fracture behavior relevant to shale gas recovery","authors":"Yingjie Li,&nbsp;Liang Zhang,&nbsp;Dejun Liu,&nbsp;Jianping Zuo,&nbsp;Shengxin Liu,&nbsp;Haiyang Dong","doi":"10.1007/s10064-025-04101-9","DOIUrl":null,"url":null,"abstract":"<div><p>To study the correlation between the mesoscopic damage evolution and macroscopic failure characteristics of anisotropic shale, an in situ high-resolution micro-computed tomography (micro-CT) was used to conduct a uniaxial loading experiment with real-time scanning on Carboniferous shale from the eastern Qaidam Basin. The subvoxel displacement field of each specimen was calculated based on the correlation coefficient interpolation of the image subset with the digital volume correlation method, and the high-precision strain field was obtained to evaluate the deformation localization characteristics of shale specimens with low and high bedding inclination angles during loading. The research results show that the stable cracks expansion is caused by the synergistic effect of tension and shear. However, the unstable cracks expansion in low bedding inclination angle shale is controlled by tension and shear, whereas in high bedding inclination angle shale, it is dominated by tension. The evolution of the axial strain field of the low bedding inclination angle shale confirms the compaction of the bedding defects, strengthening bedding planes and inhibiting the formation of cracks along bedding. Conversely, high bedding inclination angle shale experiences concentrated tensile and shear strains due to damage to original bedding defects, leading to rapid strain increase and localized strain band formation consistent with subsequent splitting failure. The strain localization can predict the development location of cracks before they become macroscopically visible in CT images.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04101-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

To study the correlation between the mesoscopic damage evolution and macroscopic failure characteristics of anisotropic shale, an in situ high-resolution micro-computed tomography (micro-CT) was used to conduct a uniaxial loading experiment with real-time scanning on Carboniferous shale from the eastern Qaidam Basin. The subvoxel displacement field of each specimen was calculated based on the correlation coefficient interpolation of the image subset with the digital volume correlation method, and the high-precision strain field was obtained to evaluate the deformation localization characteristics of shale specimens with low and high bedding inclination angles during loading. The research results show that the stable cracks expansion is caused by the synergistic effect of tension and shear. However, the unstable cracks expansion in low bedding inclination angle shale is controlled by tension and shear, whereas in high bedding inclination angle shale, it is dominated by tension. The evolution of the axial strain field of the low bedding inclination angle shale confirms the compaction of the bedding defects, strengthening bedding planes and inhibiting the formation of cracks along bedding. Conversely, high bedding inclination angle shale experiences concentrated tensile and shear strains due to damage to original bedding defects, leading to rapid strain increase and localized strain band formation consistent with subsequent splitting failure. The strain localization can predict the development location of cracks before they become macroscopically visible in CT images.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信