Optimizing the photothermal conversion performance of gold nanorods

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Guo-Wei Li, Hang-Yu Yan, Feng-Yuan Zhang, Run-Min Liu, Meng-Dai Luoshan, Li Zhou, Qu-Quan Wang
{"title":"Optimizing the photothermal conversion performance of gold nanorods","authors":"Guo-Wei Li,&nbsp;Hang-Yu Yan,&nbsp;Feng-Yuan Zhang,&nbsp;Run-Min Liu,&nbsp;Meng-Dai Luoshan,&nbsp;Li Zhou,&nbsp;Qu-Quan Wang","doi":"10.1007/s11051-025-06236-y","DOIUrl":null,"url":null,"abstract":"<div><p>Highly uniform gold nanorods (GNRs) with tunable surface plasmon resonances (SPRs) across the visible and near-infrared (NIR) spectral regions exhibit attractive photothermal conversion properties along with their chemical stability, good dispersibility, and biocompatibility. In this study, we investigate the optimization of photothermal conversion utilizing GNRs as an agent under the laser excitation at 808 nm, within the NIR-I window. The aspect ratio of GNRs is tuned by the AgNO<sub>3</sub> amount in the reaction solution, and the characteristic longitudinal SPR is of 810 nm at the aspect ratio of 4.43, matching well with the laser wavelength. When the extinction intensity (located around 808 nm) of 810-nm GNR solution is adjusted to 1.0, the photothermal conversion efficiency is achieved to an optimal value of 36.1%, which is approximately 1.7 times that of the sample with the extinction intensity of 0.3. These findings offer insights for the design of effective photothermal conversion agents.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06236-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Highly uniform gold nanorods (GNRs) with tunable surface plasmon resonances (SPRs) across the visible and near-infrared (NIR) spectral regions exhibit attractive photothermal conversion properties along with their chemical stability, good dispersibility, and biocompatibility. In this study, we investigate the optimization of photothermal conversion utilizing GNRs as an agent under the laser excitation at 808 nm, within the NIR-I window. The aspect ratio of GNRs is tuned by the AgNO3 amount in the reaction solution, and the characteristic longitudinal SPR is of 810 nm at the aspect ratio of 4.43, matching well with the laser wavelength. When the extinction intensity (located around 808 nm) of 810-nm GNR solution is adjusted to 1.0, the photothermal conversion efficiency is achieved to an optimal value of 36.1%, which is approximately 1.7 times that of the sample with the extinction intensity of 0.3. These findings offer insights for the design of effective photothermal conversion agents.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
文献相关原料
公司名称
产品信息
阿拉丁
Cetyltrimethylammonium bromide (CTAB)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信