{"title":"Various Modifications to Debye-Hückel Interactions in Solar Equations of State","authors":"Regner Trampedach, Werner Däppen","doi":"10.1007/s11207-024-02415-7","DOIUrl":null,"url":null,"abstract":"<div><p>The first-order effect of Coulomb forces between the charged particles of a plasma is the well-known Debye-Hückel-term. This term represents a negative contribution to the pressure and energy of the gas, which at high densities could overwhelm the ideal gas contributions and make the gas implode into a black hole. However, this fate could be prevented by specific physical mechanisms. We investigate three different mechanisms and analyze their effects on the equation of state and solar models, as well as their physical justifications. We conclude that higher-order Coulomb terms, in combination with quantum diffraction of electrons, provide the needed convergence.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02415-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The first-order effect of Coulomb forces between the charged particles of a plasma is the well-known Debye-Hückel-term. This term represents a negative contribution to the pressure and energy of the gas, which at high densities could overwhelm the ideal gas contributions and make the gas implode into a black hole. However, this fate could be prevented by specific physical mechanisms. We investigate three different mechanisms and analyze their effects on the equation of state and solar models, as well as their physical justifications. We conclude that higher-order Coulomb terms, in combination with quantum diffraction of electrons, provide the needed convergence.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.