{"title":"Quantitative Investigation of Colloidal Flow and Clogging Kinetics in Porous Medium Using Laser-Induced Fluorescence","authors":"Anne-Sophie Esneu, Pervez Ahmed, Guillaume Pilla, Vincent Ricordeau, Michele Bardi, Jalila Boujlel","doi":"10.1007/s11242-025-02151-x","DOIUrl":null,"url":null,"abstract":"<div><p>Transport phenomena of complex fluids are investigated experimentally using laser-induced fluorescence combined with macroscopic pressure measurements. A comprehensive experimental methodology was developed in order to both capture as well as quantify global and local dynamics of involved flow phenomena, over a long period of time—technical features that constitute a significant experimental challenge. This methodology is adapted for a wide range of applications. The present paper shows a typical example of use that concerns the study of clogging issue, a subject of strong interest for several geoscience applications such as geothermal energy or CO<sub>2</sub> storage. More particularly this work aims to study the flow of colloids in a tortuous yet permeable 2D porous medium and the consequent clogging mechanisms in a rock-like microfluidic device. Indeed, previous microfluidic studies regarding this topic generally used porous media with very simple geometries (alignment of plots), thus failing to capture the tortuous nature of real porous media that significantly affects colloid transport and retention in porous media. The averaged deposit measurements determined by image analysis and the pressure drop measurements lead to very consistent results indicating a permeability reduction due to a progressive accumulation of deposit. Local observations make it possible to identify the preferential deposition sites, to describe the mechanisms and kinetics of clogging and hence to lead to a better interpretation of the macroscopic behavior. More precisely, results show that local and global dynamics may differ. When considering the entire porous medium, specific areas of the porous network are subjected to preferential accumulation of particles while others are not, suggesting that deposition is strongly influenced by tortuosity. At the pore scale, specific retention sites at the vicinity of grains are identified, and hydrodynamics effects such as stripping are highlighted. These observations emphasize the role of the porous medium geometry on colloidal transport.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-025-02151-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transport phenomena of complex fluids are investigated experimentally using laser-induced fluorescence combined with macroscopic pressure measurements. A comprehensive experimental methodology was developed in order to both capture as well as quantify global and local dynamics of involved flow phenomena, over a long period of time—technical features that constitute a significant experimental challenge. This methodology is adapted for a wide range of applications. The present paper shows a typical example of use that concerns the study of clogging issue, a subject of strong interest for several geoscience applications such as geothermal energy or CO2 storage. More particularly this work aims to study the flow of colloids in a tortuous yet permeable 2D porous medium and the consequent clogging mechanisms in a rock-like microfluidic device. Indeed, previous microfluidic studies regarding this topic generally used porous media with very simple geometries (alignment of plots), thus failing to capture the tortuous nature of real porous media that significantly affects colloid transport and retention in porous media. The averaged deposit measurements determined by image analysis and the pressure drop measurements lead to very consistent results indicating a permeability reduction due to a progressive accumulation of deposit. Local observations make it possible to identify the preferential deposition sites, to describe the mechanisms and kinetics of clogging and hence to lead to a better interpretation of the macroscopic behavior. More precisely, results show that local and global dynamics may differ. When considering the entire porous medium, specific areas of the porous network are subjected to preferential accumulation of particles while others are not, suggesting that deposition is strongly influenced by tortuosity. At the pore scale, specific retention sites at the vicinity of grains are identified, and hydrodynamics effects such as stripping are highlighted. These observations emphasize the role of the porous medium geometry on colloidal transport.
期刊介绍:
-Publishes original research on physical, chemical, and biological aspects of transport in porous media-
Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)-
Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications-
Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes-
Expanded in 2007 from 12 to 15 issues per year.
Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).