Intertwining and Propagation of Mixtures for Generalized KMP Models and Harmonic Models

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Cristian Giardinà, Frank Redig, Berend van Tol
{"title":"Intertwining and Propagation of Mixtures for Generalized KMP Models and Harmonic Models","authors":"Cristian Giardinà,&nbsp;Frank Redig,&nbsp;Berend van Tol","doi":"10.1007/s10955-025-03393-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study a class of stochastic models of mass transport on discrete vertex set <i>V</i>. For these models, a one-parameter family of homogeneous product measures <span>\\(\\otimes _{i\\in V} \\nu _\\theta \\)</span> is reversible. We prove that the set of mixtures of inhomogeneous product measures with equilibrium marginals, i.e., the set of measures of the form </p><div><div><span>$$ \\int \\Big (\\bigotimes _{i\\in V} \\nu _{\\theta _i}\\Big ) \\,\\Xi \\Big (\\prod _{i\\in V}d\\theta _i\\Big ) $$</span></div></div><p>is left invariant by the dynamics in the course of time, and the “mixing measure” <span>\\(\\Xi \\)</span> evolves according to a Markov process which we then call “the hidden parameter model”. This generalizes results from De Masi et al. (Preprint arXiv:2310.01672, 2023) to a larger class of models and on more general graphs. The class of models includes discrete and continuous generalized KMP models, as well as discrete and continuous harmonic models. The results imply that in all these models, the non-equilibrium steady state of their reservoir driven version is a mixture of product measures where the mixing measure is in turn the stationary state of the corresponding “hidden parameter model”. For the boundary-driven harmonic models on the chain <span>\\(\\{1,\\ldots , N\\}\\)</span> with nearest neighbor edges, we recover that the stationary measure of the hidden parameter model is the joint distribution of the ordered Dirichlet distribution (cf. Carinci et al., Preprint arXiv:2307.14975, 2023), with a purely probabilistic proof based on a spatial Markov property of the hidden parameter model.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03393-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03393-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study a class of stochastic models of mass transport on discrete vertex set V. For these models, a one-parameter family of homogeneous product measures \(\otimes _{i\in V} \nu _\theta \) is reversible. We prove that the set of mixtures of inhomogeneous product measures with equilibrium marginals, i.e., the set of measures of the form

$$ \int \Big (\bigotimes _{i\in V} \nu _{\theta _i}\Big ) \,\Xi \Big (\prod _{i\in V}d\theta _i\Big ) $$

is left invariant by the dynamics in the course of time, and the “mixing measure” \(\Xi \) evolves according to a Markov process which we then call “the hidden parameter model”. This generalizes results from De Masi et al. (Preprint arXiv:2310.01672, 2023) to a larger class of models and on more general graphs. The class of models includes discrete and continuous generalized KMP models, as well as discrete and continuous harmonic models. The results imply that in all these models, the non-equilibrium steady state of their reservoir driven version is a mixture of product measures where the mixing measure is in turn the stationary state of the corresponding “hidden parameter model”. For the boundary-driven harmonic models on the chain \(\{1,\ldots , N\}\) with nearest neighbor edges, we recover that the stationary measure of the hidden parameter model is the joint distribution of the ordered Dirichlet distribution (cf. Carinci et al., Preprint arXiv:2307.14975, 2023), with a purely probabilistic proof based on a spatial Markov property of the hidden parameter model.

广义KMP模型与调和模型混合的缠结与传播
研究了离散顶点集v上质量输运的一类随机模型。对于这些模型,单参数齐次积测度族\(\otimes _{i\in V} \nu _\theta \)是可逆的。我们证明了具有平衡边际的非齐次积测度的混合集,即形式为$$ \int \Big (\bigotimes _{i\in V} \nu _{\theta _i}\Big ) \,\Xi \Big (\prod _{i\in V}d\theta _i\Big ) $$的测度集在时间过程中是不变的,并且“混合测度”\(\Xi \)根据一个马尔可夫过程演变,我们称之为“隐参数模型”。这将De Masi等人(预印本arXiv:2310.01672, 2023)的结果推广到更大的模型类别和更一般的图上。这类模型包括离散和连续广义KMP模型,以及离散和连续调和模型。结果表明,在所有这些模型中,其油藏驱动版本的非平衡稳态是一个混合的产品措施,其中混合措施是相应的“隐参数模型”的稳态。对于具有最近邻边的链\(\{1,\ldots , N\}\)上的边界驱动谐波模型,我们恢复了隐参数模型的平稳测度是有序Dirichlet分布的联合分布(cf. Carinci et al., Preprint arXiv:2307.14975, 2023),并基于隐参数模型的空间马尔可夫性质进行了纯概率证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信