Impedance and modulus spectroscopy of thermally synthesised ZnFe2O4 prepared through the mediation of different polymers

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Harsha Chouhan, Sushil Kumar Behera, Maheswar Panda
{"title":"Impedance and modulus spectroscopy of thermally synthesised ZnFe2O4 prepared through the mediation of different polymers","authors":"Harsha Chouhan,&nbsp;Sushil Kumar Behera,&nbsp;Maheswar Panda","doi":"10.1007/s12034-024-03374-2","DOIUrl":null,"url":null,"abstract":"<div><p>ZnFe<sub>2</sub>O<sub>4</sub> was thermally synthesised through the mediation of different polymers such as Poly(vinyl alcohol), Poly(vinyl pyrrolidone) and Poly(ethylene glycol) to prevent the unwanted agglomeration. The Rietveld refinement of the XRD spectra confirmed the sample to be fcc, while the FESEM/TEM micrographs exhibited the formation of spherical nanoparticles. The TGA/DSC analysis confirmed that the sample is stable up to 500°C. The dielectric, impedance and modulus spectroscopy as a function of temperature up to 200°C and within the frequency range of 20 Hz to 2 MHz confirm a single non-Debye type relaxation behaviour at different temperatures (well fitted by the KWW (Kohlrausch–Williams–Watts) function) attributed to the grain boundary/MWS polarisation present in the samples. The modulus and impedance master curve confirmed the distribution of relaxation times being independent of temperature. The AC conductivity phenomenon is explained using the CBH (correlated barrier hopping) model, satisfying Jonscher's universal power law with exponents in the range of [0,1] with an activation energy in the range of 0.4–0.8 eV. The obtained optical spectra of the samples with the help of UV-visible/PL spectra evaluate the direct energy band gap to be from 1.7 eV to 2.8 eV and these ferrites may be suitable for high-frequency as well as for optoelectronic applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03374-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ZnFe2O4 was thermally synthesised through the mediation of different polymers such as Poly(vinyl alcohol), Poly(vinyl pyrrolidone) and Poly(ethylene glycol) to prevent the unwanted agglomeration. The Rietveld refinement of the XRD spectra confirmed the sample to be fcc, while the FESEM/TEM micrographs exhibited the formation of spherical nanoparticles. The TGA/DSC analysis confirmed that the sample is stable up to 500°C. The dielectric, impedance and modulus spectroscopy as a function of temperature up to 200°C and within the frequency range of 20 Hz to 2 MHz confirm a single non-Debye type relaxation behaviour at different temperatures (well fitted by the KWW (Kohlrausch–Williams–Watts) function) attributed to the grain boundary/MWS polarisation present in the samples. The modulus and impedance master curve confirmed the distribution of relaxation times being independent of temperature. The AC conductivity phenomenon is explained using the CBH (correlated barrier hopping) model, satisfying Jonscher's universal power law with exponents in the range of [0,1] with an activation energy in the range of 0.4–0.8 eV. The obtained optical spectra of the samples with the help of UV-visible/PL spectra evaluate the direct energy band gap to be from 1.7 eV to 2.8 eV and these ferrites may be suitable for high-frequency as well as for optoelectronic applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信