Hankel and Toeplitz Determinants of Logarithmic Coefficients of Inverse Functions for Certain Classes of Univalent Functions

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Sanju Mandal, Partha Pratim Roy, Molla Basir Ahamed
{"title":"Hankel and Toeplitz Determinants of Logarithmic Coefficients of Inverse Functions for Certain Classes of Univalent Functions","authors":"Sanju Mandal,&nbsp;Partha Pratim Roy,&nbsp;Molla Basir Ahamed","doi":"10.1007/s40995-024-01717-6","DOIUrl":null,"url":null,"abstract":"<div><p>The Hankel and Toeplitz determinants <span>\\(H_{2,1}(F_{f^{-1}}/2)\\)</span> and <span>\\(T_{2,1}(F_{f^{-1}}/2)\\)</span> are defined as: <span>\\(H_{2,1}(F_{f^{-1}}/2):=\\Gamma _{1}\\Gamma _{3} -\\Gamma ^2_{2}\\)</span> and <span>\\(T_{2,1}(F_{f^{-1}}/2):=\\Gamma ^2_{1}-\\Gamma ^2_{2}\\)</span>, where <span>\\(\\Gamma _1, \\Gamma _2,\\)</span> and <span>\\(\\Gamma _3\\)</span> are the first, second and third logarithmic coefficients of inverse functions belonging to the class <span>\\(\\mathcal {S}\\)</span> of normalized univalent functions. In this article, we establish sharp inequalities <span>\\(|H_{2,1}(F_{f^{-1}}/2)|\\le 1/4\\)</span>, <span>\\(|H_{2,1}(F_{f^{-1}}/2)| \\le 1/36\\)</span>, <span>\\(|T_{2,1}(F_{f^{-1}}/2)|\\le 5/16\\)</span> and <span>\\(|T_{2,1}(F_{f^{-1}}/2)|\\le 145/2304\\)</span> for the logarithmic coefficients of inverse functions for the classes of starlike functions and convex functions with respect to symmetric points. The results show an invariance property of the second Hankel determinants <span>\\(H_{2,1}(F_{f}/2)\\)</span> and <span>\\(H_{2,1}(F_{f^{-1}}/2)\\)</span> of logarithmic coefficients for the classes <span>\\(\\mathcal {S}^*_S\\)</span> and <span>\\(\\mathcal {K}_S\\)</span>. Moreover, we exhibit examples showing that the strict inequality in the main results hold.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"49 1","pages":"243 - 252"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01717-6","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Hankel and Toeplitz determinants \(H_{2,1}(F_{f^{-1}}/2)\) and \(T_{2,1}(F_{f^{-1}}/2)\) are defined as: \(H_{2,1}(F_{f^{-1}}/2):=\Gamma _{1}\Gamma _{3} -\Gamma ^2_{2}\) and \(T_{2,1}(F_{f^{-1}}/2):=\Gamma ^2_{1}-\Gamma ^2_{2}\), where \(\Gamma _1, \Gamma _2,\) and \(\Gamma _3\) are the first, second and third logarithmic coefficients of inverse functions belonging to the class \(\mathcal {S}\) of normalized univalent functions. In this article, we establish sharp inequalities \(|H_{2,1}(F_{f^{-1}}/2)|\le 1/4\), \(|H_{2,1}(F_{f^{-1}}/2)| \le 1/36\), \(|T_{2,1}(F_{f^{-1}}/2)|\le 5/16\) and \(|T_{2,1}(F_{f^{-1}}/2)|\le 145/2304\) for the logarithmic coefficients of inverse functions for the classes of starlike functions and convex functions with respect to symmetric points. The results show an invariance property of the second Hankel determinants \(H_{2,1}(F_{f}/2)\) and \(H_{2,1}(F_{f^{-1}}/2)\) of logarithmic coefficients for the classes \(\mathcal {S}^*_S\) and \(\mathcal {K}_S\). Moreover, we exhibit examples showing that the strict inequality in the main results hold.

一类单价函数反函数的对数系数的Hankel和Toeplitz行列式
Hankel和Toeplitz行列式\(H_{2,1}(F_{f^{-1}}/2)\)和\(T_{2,1}(F_{f^{-1}}/2)\)定义为:\(H_{2,1}(F_{f^{-1}}/2):=\Gamma _{1}\Gamma _{3} -\Gamma ^2_{2}\)和\(T_{2,1}(F_{f^{-1}}/2):=\Gamma ^2_{1}-\Gamma ^2_{2}\),其中\(\Gamma _1, \Gamma _2,\)和\(\Gamma _3\)是归一化一元函数\(\mathcal {S}\)类反函数的第一、第二和第三对数系数。在本文中,我们建立了关于对称点的星形函数和凸函数类的逆函数的对数系数的尖锐不等式\(|H_{2,1}(F_{f^{-1}}/2)|\le 1/4\), \(|H_{2,1}(F_{f^{-1}}/2)| \le 1/36\), \(|T_{2,1}(F_{f^{-1}}/2)|\le 5/16\)和\(|T_{2,1}(F_{f^{-1}}/2)|\le 145/2304\)。结果表明,对于\(\mathcal {S}^*_S\)和\(\mathcal {K}_S\)类,对数系数的第二Hankel行列式\(H_{2,1}(F_{f}/2)\)和\(H_{2,1}(F_{f^{-1}}/2)\)具有不变性。此外,我们展示的例子表明,严格不等式的主要结果成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信