{"title":"A new optimization method of initial support for TBM tunnel crossing fault zone based on deformation control contribution","authors":"Peng Lin, Jintao Kang, Zhenhao Xu","doi":"10.1007/s10064-025-04122-4","DOIUrl":null,"url":null,"abstract":"<div><p>The optimization and quantitative evaluation of tunnel support systems under complex geological conditions remains challenging. Therefore, a definition ‘deformation control contribution’ is put forward to quantitatively evaluate the effect of initial support on controlling the rock deformation. And a new optimization method of initial support is proposed for TBM tunnel crossing fault zone based on deformation control contribution. Firstly, the deformation characteristics of surrounding rock were explored. Subsequently, a series of numerical tests were conducted to investigate the deformation control effect of shotcrete, bolt, and steel arch parameters. Finally, the deformation control contribution of different support systems in fault-controlled section is quantitatively evaluated. The results show that: (1) The influence of support parameters on surrounding rock deformation is different. In terms of influence degree, the thickness of shotcrete is greater than stiffness, The spacing of bolts has greater influence than length, and the cross-sectional area, moment of inertia and spacing of steel arches are similar. (2) The deformation control contribution of the support systems in fault-controlled section is different. In bed rock zone, the contribution of shotcrete is highest (59.9%~67.6%). In fault damaged zone, the contribution of steel arch is highest (46.3%~56.2%). In fault core, the contribution of steel arch is also the highest (47.5%~62.2%). (3) The optimal support systems and support parameters for fault-controlled section are proposed, and the synergistic mechanism among support systems is revealed by stress analysis. The research results provide effective guidance for the dynamic design and optimization of the tunnel support systems.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04122-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The optimization and quantitative evaluation of tunnel support systems under complex geological conditions remains challenging. Therefore, a definition ‘deformation control contribution’ is put forward to quantitatively evaluate the effect of initial support on controlling the rock deformation. And a new optimization method of initial support is proposed for TBM tunnel crossing fault zone based on deformation control contribution. Firstly, the deformation characteristics of surrounding rock were explored. Subsequently, a series of numerical tests were conducted to investigate the deformation control effect of shotcrete, bolt, and steel arch parameters. Finally, the deformation control contribution of different support systems in fault-controlled section is quantitatively evaluated. The results show that: (1) The influence of support parameters on surrounding rock deformation is different. In terms of influence degree, the thickness of shotcrete is greater than stiffness, The spacing of bolts has greater influence than length, and the cross-sectional area, moment of inertia and spacing of steel arches are similar. (2) The deformation control contribution of the support systems in fault-controlled section is different. In bed rock zone, the contribution of shotcrete is highest (59.9%~67.6%). In fault damaged zone, the contribution of steel arch is highest (46.3%~56.2%). In fault core, the contribution of steel arch is also the highest (47.5%~62.2%). (3) The optimal support systems and support parameters for fault-controlled section are proposed, and the synergistic mechanism among support systems is revealed by stress analysis. The research results provide effective guidance for the dynamic design and optimization of the tunnel support systems.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.