{"title":"Dual-controlled tunable polarization-independent triple-band absorber using hybrid dirac semimetal-vanadium dioxide metamaterial","authors":"Baojing Hu, Sumei Hong, Hongwei Ding, Ming Huang","doi":"10.1007/s11082-025-08066-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a dual-controlled tunable polarization-independent triple-band absorber using hybrid bulk Dirac semimetal (BDS) and vanadium dioxide (VO<sub>2</sub>) metamaterial is proposed. The physical properties of the absorber can be theoretically analyzed by the equivalent circuit model (ECM). When the Fermi energy of BDS increases from 0.11 to 0.15 eV, the peak frequencies also gradually increase and blue shift occurs. In addition, When the VO<sub>2</sub> is in fully metallic state, the absorber exhibits three distinct absorption peaks with absorptances of 99.76%, 99.61% and 99.76%, respectively, with an average absorptance of 99.71%. As the the transition of VO<sub>2</sub> from fully metallic state to insulating state, the transmittance and reflectance increase and the absorptance gradually decreases. Moreover, due to the structure symmetry of the absorber, the absorptance exhibits polarization independent behavior. Finally, the modulations of absorptivity spectra by tailoring the structure dimension and the potential for the application of the absorber as a refractive index sensor, are further discussed. This study provides potential applications in the design of multi-band dual–controlled tunable sensors, filters and absorbers.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11082-025-08066-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08066-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a dual-controlled tunable polarization-independent triple-band absorber using hybrid bulk Dirac semimetal (BDS) and vanadium dioxide (VO2) metamaterial is proposed. The physical properties of the absorber can be theoretically analyzed by the equivalent circuit model (ECM). When the Fermi energy of BDS increases from 0.11 to 0.15 eV, the peak frequencies also gradually increase and blue shift occurs. In addition, When the VO2 is in fully metallic state, the absorber exhibits three distinct absorption peaks with absorptances of 99.76%, 99.61% and 99.76%, respectively, with an average absorptance of 99.71%. As the the transition of VO2 from fully metallic state to insulating state, the transmittance and reflectance increase and the absorptance gradually decreases. Moreover, due to the structure symmetry of the absorber, the absorptance exhibits polarization independent behavior. Finally, the modulations of absorptivity spectra by tailoring the structure dimension and the potential for the application of the absorber as a refractive index sensor, are further discussed. This study provides potential applications in the design of multi-band dual–controlled tunable sensors, filters and absorbers.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.