Two dimensional coordination polymer of pb(II) complex with m-sulfanilic acid: synthesis, characterization, electrical conductivity, adsorption properties and Hirshfeld surface analysis

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Abdullaev Ahrorjon Khabibjonovich, Yakubov Yuldosh Yusupboevich, Adizov Bobirjon Zamirovich, Ruzmetov Abror Khamidjanovich, Normamatov Adkhamjon Sadullayevich, Mamatkodirov D. Behzodjon, Kodambaev Pirnazar Kodamboevich, Ikram I. Abdullaev, Chellakarungu Balakrishnan, Ibragimov Bakhtiyar Tulaganovich, Ashurov Jasmshid Mengnorovich, Junkuo Gao, Ibragimov Aziz Bakhtiyarovich
{"title":"Two dimensional coordination polymer of pb(II) complex with m-sulfanilic acid: synthesis, characterization, electrical conductivity, adsorption properties and Hirshfeld surface analysis","authors":"Abdullaev Ahrorjon Khabibjonovich,&nbsp;Yakubov Yuldosh Yusupboevich,&nbsp;Adizov Bobirjon Zamirovich,&nbsp;Ruzmetov Abror Khamidjanovich,&nbsp;Normamatov Adkhamjon Sadullayevich,&nbsp;Mamatkodirov D. Behzodjon,&nbsp;Kodambaev Pirnazar Kodamboevich,&nbsp;Ikram I. Abdullaev,&nbsp;Chellakarungu Balakrishnan,&nbsp;Ibragimov Bakhtiyar Tulaganovich,&nbsp;Ashurov Jasmshid Mengnorovich,&nbsp;Junkuo Gao,&nbsp;Ibragimov Aziz Bakhtiyarovich","doi":"10.1007/s10450-024-00587-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the synthesis, structure and characterization of a novel two-dimensional coordination polymer (<b>CP</b>) constructed from Pb(II) ions and m-sulfanilic acid. The CP was characterized using various techniques, including element analysis, FTIR-, UV-Visible spectrometry, TG- DTA analysis, powder and single-crystal X-ray diffraction. The crystal structure of the catena-(bis(µ3-3-aminobenzenesulfonato)lead(II)) complex shows that each lead(II) ion is surrounded by two nitrogen atoms and six oxygen atoms from the amino and sulfonate groups of the 3-aminobenzenesulfonate ligands. Importantly, the lead(II) ions have a stereochemically active lone pair of electrons, which results in a distorted coordination geometry. This distortion, known as hemidirected coordination, arises from the uneven distribution of ligands around the lead ion due to the influence of the lone pair. Its electrical conductivity was measured, revealing its potential for electronic applications. Adsorption properties were evaluated for gas N<sub>2</sub>. The BET surface area was calculated to be 383.108 m²/g, with a monolayer capacity of 4.2 mmol/g and a C value of 120. The molecular cross-sectional area for nitrogen was taken as 0.162 nm²/molecule. The porosity (ε) of the sample was determined to be 0.65, considering both open and closed pores. Additionally, Hirshfeld surface analysis provided insights into intermolecular interactions within the <b>CP</b>, primarily O—H/H—O interactions (32.1%), H—H interactions (24.8%), and C—H/H—C interactions (16.7%). Pb—O/O—Pb interactions contribute 10.1%, and O—C/C—O interactions contribute 7.3%. Other interactions, such as Pb—N/N—Pb, O—O, O—N/N—O, Pb—H/H—Pb, and Pb—C/C—Pb, contribute smaller percentages. The Continuous Symmetry Measure (CSM) analysis of the lead complex indicates a nearly symmetric structure with slight distortions, as evidenced by its coordination number of 7.7369 and a distortion index of 0.02089. Bond Valence Sum (BVS) analysis confirms that the lead ion is in an oxidation state close to + 2, with a total BVS of 1.87.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00587-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the synthesis, structure and characterization of a novel two-dimensional coordination polymer (CP) constructed from Pb(II) ions and m-sulfanilic acid. The CP was characterized using various techniques, including element analysis, FTIR-, UV-Visible spectrometry, TG- DTA analysis, powder and single-crystal X-ray diffraction. The crystal structure of the catena-(bis(µ3-3-aminobenzenesulfonato)lead(II)) complex shows that each lead(II) ion is surrounded by two nitrogen atoms and six oxygen atoms from the amino and sulfonate groups of the 3-aminobenzenesulfonate ligands. Importantly, the lead(II) ions have a stereochemically active lone pair of electrons, which results in a distorted coordination geometry. This distortion, known as hemidirected coordination, arises from the uneven distribution of ligands around the lead ion due to the influence of the lone pair. Its electrical conductivity was measured, revealing its potential for electronic applications. Adsorption properties were evaluated for gas N2. The BET surface area was calculated to be 383.108 m²/g, with a monolayer capacity of 4.2 mmol/g and a C value of 120. The molecular cross-sectional area for nitrogen was taken as 0.162 nm²/molecule. The porosity (ε) of the sample was determined to be 0.65, considering both open and closed pores. Additionally, Hirshfeld surface analysis provided insights into intermolecular interactions within the CP, primarily O—H/H—O interactions (32.1%), H—H interactions (24.8%), and C—H/H—C interactions (16.7%). Pb—O/O—Pb interactions contribute 10.1%, and O—C/C—O interactions contribute 7.3%. Other interactions, such as Pb—N/N—Pb, O—O, O—N/N—O, Pb—H/H—Pb, and Pb—C/C—Pb, contribute smaller percentages. The Continuous Symmetry Measure (CSM) analysis of the lead complex indicates a nearly symmetric structure with slight distortions, as evidenced by its coordination number of 7.7369 and a distortion index of 0.02089. Bond Valence Sum (BVS) analysis confirms that the lead ion is in an oxidation state close to + 2, with a total BVS of 1.87.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信