Stepan Yu. Kupreenko, Dmitry N. Stolbov, Sergey A. Chernyak, Konstantin I. Maslakov, Natalia E. Strokova, Mikhail M. Levin, Ekaterina A. Arkhipova, Anton S. Ivanov, Serguei V. Savilov
{"title":"Adsorption of organic solvent vapours on pristine and doped few-layer graphene nanoflakes","authors":"Stepan Yu. Kupreenko, Dmitry N. Stolbov, Sergey A. Chernyak, Konstantin I. Maslakov, Natalia E. Strokova, Mikhail M. Levin, Ekaterina A. Arkhipova, Anton S. Ivanov, Serguei V. Savilov","doi":"10.1007/s10450-024-00589-x","DOIUrl":null,"url":null,"abstract":"<div><p>Heterosubstitution is widely used to control the surface properties of graphene materials. The knowledge of the mechanism of organic solvent vapour sorption on doped graphene materials is necessary for development of air purification technologies, volatile organic compounds sensors, metal-free catalysis and for many other applications. The effect of N, S and Si doping and oxidative functionalization of few-layer graphene nanoflakes on the adsorption of organic solvent vapours was measured. The nanoflakes were also analyzed by TEM, XPS, Raman spectroscopy and low-temperature nitrogen physisorption. Special attention was paid to the dependence of the isosteric heat of adsorption on the surface coverage for various adsorbate-adsorbent pairs, which carry information about the energy inhomogeneity of the surface, the hierarchy of adsorbate-adsorbate, adsorbate-basal plane and adsorbate-functional groups interactions, and the mechanism of adsorption. This dependence for the hexane sorption can be used to detect hydrophilic groups on the surface, and to compare the degree of curvature of graphene layers in different heterosubstituted graphene materials.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00589-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heterosubstitution is widely used to control the surface properties of graphene materials. The knowledge of the mechanism of organic solvent vapour sorption on doped graphene materials is necessary for development of air purification technologies, volatile organic compounds sensors, metal-free catalysis and for many other applications. The effect of N, S and Si doping and oxidative functionalization of few-layer graphene nanoflakes on the adsorption of organic solvent vapours was measured. The nanoflakes were also analyzed by TEM, XPS, Raman spectroscopy and low-temperature nitrogen physisorption. Special attention was paid to the dependence of the isosteric heat of adsorption on the surface coverage for various adsorbate-adsorbent pairs, which carry information about the energy inhomogeneity of the surface, the hierarchy of adsorbate-adsorbate, adsorbate-basal plane and adsorbate-functional groups interactions, and the mechanism of adsorption. This dependence for the hexane sorption can be used to detect hydrophilic groups on the surface, and to compare the degree of curvature of graphene layers in different heterosubstituted graphene materials.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.