Mohamed J. Saadh, Mohammed Ahmed Mustafa, Pawan Sharma, Abhishek Kumar, Anmar Ghanim Taki, Manal Morad Karim, Salah Hassan Zain Al-Abdeen, Majli Nema Hawas, Ahmed Elawady, Mohammed Asiri
{"title":"Pt-decorated BC2N monolayer as a promising sensor for γ-Hydroxybutyric acid drug: a computational study","authors":"Mohamed J. Saadh, Mohammed Ahmed Mustafa, Pawan Sharma, Abhishek Kumar, Anmar Ghanim Taki, Manal Morad Karim, Salah Hassan Zain Al-Abdeen, Majli Nema Hawas, Ahmed Elawady, Mohammed Asiri","doi":"10.1007/s10450-024-00585-1","DOIUrl":null,"url":null,"abstract":"<div><p>Gamma-Hydroxybutyric acid (HBA) has been banned by the Food and Drug Administration (FDA) due to its extensive use in sexual assaults. HBA must be detected in biological media through effective methodologies. This paper evaluated the feasibility of exploiting pristine and Pt-decorated BC2N nanosheets in HBA detection using density functional theory (DFT). HBA molecules were found to be adsorbed onto BC2N, with an adsorption energy of -52.1 kJ/mol. The space around N atoms on the adsorbent and drug is a major determinant of the interaction (particularly the steric hindrance effect). The pristine BC2N nanosheets showed a poor tendency to adsorb HBA, with a negligible response of 5.3 at 298 K. The Pt atom, on the other hand, strongly adsorbed the HBA through its C head, releasing − 151.2 kJ/mol of adsorption energy and inducing a sufficiently long distance from the N atom on account of smaller crowding. The BC2N nanosheet facilitated the adsorption of HBA onto Pt through the O head of HBA molecules, with an adsorption energy of -151.2 kJ/mol. Therefore, the adsorption mechanism was concluded to be chemisorption. The decoration of BC2N with Pt remarkably enhanced its HBA sensitivity and provided a reactivity of 340.7, which would be explained by the major charge transfer from the adsorbate to the adsorbent. A recovery time of 4.9 s was predicted for the desorption of HBA from Pt@BC2N. Thus, Pt decoration enabled BC2N nanosheets to be a promising HBA nanosensor.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00585-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gamma-Hydroxybutyric acid (HBA) has been banned by the Food and Drug Administration (FDA) due to its extensive use in sexual assaults. HBA must be detected in biological media through effective methodologies. This paper evaluated the feasibility of exploiting pristine and Pt-decorated BC2N nanosheets in HBA detection using density functional theory (DFT). HBA molecules were found to be adsorbed onto BC2N, with an adsorption energy of -52.1 kJ/mol. The space around N atoms on the adsorbent and drug is a major determinant of the interaction (particularly the steric hindrance effect). The pristine BC2N nanosheets showed a poor tendency to adsorb HBA, with a negligible response of 5.3 at 298 K. The Pt atom, on the other hand, strongly adsorbed the HBA through its C head, releasing − 151.2 kJ/mol of adsorption energy and inducing a sufficiently long distance from the N atom on account of smaller crowding. The BC2N nanosheet facilitated the adsorption of HBA onto Pt through the O head of HBA molecules, with an adsorption energy of -151.2 kJ/mol. Therefore, the adsorption mechanism was concluded to be chemisorption. The decoration of BC2N with Pt remarkably enhanced its HBA sensitivity and provided a reactivity of 340.7, which would be explained by the major charge transfer from the adsorbate to the adsorbent. A recovery time of 4.9 s was predicted for the desorption of HBA from Pt@BC2N. Thus, Pt decoration enabled BC2N nanosheets to be a promising HBA nanosensor.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.