{"title":"Numerical investigation on failure characteristics of concrete lining in deep tunnel subject to oblique incidence of stress waves","authors":"Yunfan Bai, Shiming Wang, Yuanqiang Chen, Jiaqi Wang, Qiuhong Wu, Jian Zhou, Chuanqi Li","doi":"10.1007/s43452-025-01125-6","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the instability and failure of concrete linings in deep tunnels due to obliquely incident stress waves from mining disturbances, this study investigates the failure characteristics of concrete tunnel linings under varying wave incidence angles (0°, 15°, 30°, and 45°) using numerical modeling with PFC2D software. The model applicability is verified by stress wave propagation theory and spalling tests. Results demonstrate that under blast loads, failures predominantly occur in the concrete lining rather than the rock mass. Concrete linings effectively reduce blast damage to the surrounding rock and maintain stability. Vertical stress wave incidence causes the most severe damage to the concrete lining, whereas the least damage occurs at a 45° angle. The concrete tunnel lining failure is primarily caused by P-wave. When P-wave is large enough, the S-wave generated by oblique incidence make the tensile crack expand, and lead to second damage to concrete tunnel lining. As incident wave energy increases, concrete lining damage worsens, followed by rock spalling. The strain energy in concrete tunnel lining accumulates with increasing burial depth, resulting in more cracks in concrete tunnel lining under the action of the same stress wave. Thus, even small blast loads can severely damage deep-buried concrete tunnel linings.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01125-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the instability and failure of concrete linings in deep tunnels due to obliquely incident stress waves from mining disturbances, this study investigates the failure characteristics of concrete tunnel linings under varying wave incidence angles (0°, 15°, 30°, and 45°) using numerical modeling with PFC2D software. The model applicability is verified by stress wave propagation theory and spalling tests. Results demonstrate that under blast loads, failures predominantly occur in the concrete lining rather than the rock mass. Concrete linings effectively reduce blast damage to the surrounding rock and maintain stability. Vertical stress wave incidence causes the most severe damage to the concrete lining, whereas the least damage occurs at a 45° angle. The concrete tunnel lining failure is primarily caused by P-wave. When P-wave is large enough, the S-wave generated by oblique incidence make the tensile crack expand, and lead to second damage to concrete tunnel lining. As incident wave energy increases, concrete lining damage worsens, followed by rock spalling. The strain energy in concrete tunnel lining accumulates with increasing burial depth, resulting in more cracks in concrete tunnel lining under the action of the same stress wave. Thus, even small blast loads can severely damage deep-buried concrete tunnel linings.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.