The Formation of K-Cymrite in Subduction Zones and Its Potential for Transport of Potassium, Water, and Nitrogen into the Mantle

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
A. G. Sokol, A. V. Korsakov, A. N. Kruk
{"title":"The Formation of K-Cymrite in Subduction Zones and Its Potential for Transport of Potassium, Water, and Nitrogen into the Mantle","authors":"A. G. Sokol,&nbsp;A. V. Korsakov,&nbsp;A. N. Kruk","doi":"10.1134/S0016702924700745","DOIUrl":null,"url":null,"abstract":"<p>The conditions of the formation of K-cymrite in volatile-rich pelite and partially devolatilized mica quartz–muscovite–chlorite schist were experimentally investigated at pressures of 5.5, 6.3, and 7.8 GPa and temperatures ranging from 900 to 1090°C corresponding to hot subduction geotherm. Experimental samples at these <i>P–T</i> conditions formed assemblage of solid phases (<i>Grt + Coe + Phe + Cpx + Ky</i>, with accessory <i>Po + Ru + Zrn ± Mnz</i>) and water-enriched supercritical fluid–melt. Analysis of the obtained data indicates that the stability of phengite and its potential replacement by K-cymrite depends on the <i>P–T</i> conditions and the amount of volatiles in the metasediment. In samples of volatile-rich pelite and mica schist at 5.5 GPa and 900°C, as well as at 6.3 GPa and 1000°C, phengite remains stable in equilibrium with 3–13 wt % of the fluid–melt. With increasing pressure up to 7.8 GPa and temperature up to 1090°C, the fraction of supercritical fluid–melt in pelite reaches 20 wt %, while phengite disappears. Only 5 wt % supercritical fluid–melt are formed in the schist at 7.8 GPa and 1070°C, while most part of phengite is preserved. For the first time, phase assemblage with phengite and K-cymrite (±kokchetavite) was obtained in the pelite and schist samples at 7.8 GPa and 1070°C. The assemblage was identified using Raman mapping. At stepwise devolatilization (with removal of fluid–melt portion forming in equilibrium with volatile-bearing minerals that are stable at <i>P–T</i> conditions of experiments), phengite has been preserved up to 7.8 GPa and 1090°C, but K-cymrite is not formed in the absence of fluid–melt. It was concluded that the most effective transport of volatiles (first of all, water) in the metasediment to depths over 240 km may occur during its partial and early (before the formation of supercritical fluid–melt) devolatilization. In this case, almost all phengite may reach depths of 240 km during metasediment subduction and then transform into water-bearing K-cymrite, or, in the presence of nitrogen in the metasediment, into nitrogen-bearing K-cymrite, thus facilitating the further transport of LILE (large-ion lithophile elements), water, and nitrogen. However, the formation of a significant portion of supercritical fluid–melt leads to the complete dissolution of phengite with increasing <i>P–T</i> conditions, making further transport of LILE, water, and nitrogen impossible. During deep multi-stage devolatilization, phengite remains stable up to depths of 240 km; however, during further subduction, it likely transforms into an anhydrous K-hollandite (KAlSi<sub>3</sub>O<sub>8</sub>).</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"62 12","pages":"1322 - 1331"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0016702924700745.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702924700745","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The conditions of the formation of K-cymrite in volatile-rich pelite and partially devolatilized mica quartz–muscovite–chlorite schist were experimentally investigated at pressures of 5.5, 6.3, and 7.8 GPa and temperatures ranging from 900 to 1090°C corresponding to hot subduction geotherm. Experimental samples at these P–T conditions formed assemblage of solid phases (Grt + Coe + Phe + Cpx + Ky, with accessory Po + Ru + Zrn ± Mnz) and water-enriched supercritical fluid–melt. Analysis of the obtained data indicates that the stability of phengite and its potential replacement by K-cymrite depends on the P–T conditions and the amount of volatiles in the metasediment. In samples of volatile-rich pelite and mica schist at 5.5 GPa and 900°C, as well as at 6.3 GPa and 1000°C, phengite remains stable in equilibrium with 3–13 wt % of the fluid–melt. With increasing pressure up to 7.8 GPa and temperature up to 1090°C, the fraction of supercritical fluid–melt in pelite reaches 20 wt %, while phengite disappears. Only 5 wt % supercritical fluid–melt are formed in the schist at 7.8 GPa and 1070°C, while most part of phengite is preserved. For the first time, phase assemblage with phengite and K-cymrite (±kokchetavite) was obtained in the pelite and schist samples at 7.8 GPa and 1070°C. The assemblage was identified using Raman mapping. At stepwise devolatilization (with removal of fluid–melt portion forming in equilibrium with volatile-bearing minerals that are stable at P–T conditions of experiments), phengite has been preserved up to 7.8 GPa and 1090°C, but K-cymrite is not formed in the absence of fluid–melt. It was concluded that the most effective transport of volatiles (first of all, water) in the metasediment to depths over 240 km may occur during its partial and early (before the formation of supercritical fluid–melt) devolatilization. In this case, almost all phengite may reach depths of 240 km during metasediment subduction and then transform into water-bearing K-cymrite, or, in the presence of nitrogen in the metasediment, into nitrogen-bearing K-cymrite, thus facilitating the further transport of LILE (large-ion lithophile elements), water, and nitrogen. However, the formation of a significant portion of supercritical fluid–melt leads to the complete dissolution of phengite with increasing P–T conditions, making further transport of LILE, water, and nitrogen impossible. During deep multi-stage devolatilization, phengite remains stable up to depths of 240 km; however, during further subduction, it likely transforms into an anhydrous K-hollandite (KAlSi3O8).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochemistry International
Geochemistry International 地学-地球化学与地球物理
CiteScore
1.60
自引率
12.50%
发文量
89
审稿时长
1 months
期刊介绍: Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信