High-Speed Faddeev Calculations of the Three-Nucleon Continuum with Chiral Forces

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Henryk Witała
{"title":"High-Speed Faddeev Calculations of the Three-Nucleon Continuum with Chiral Forces","authors":"Henryk Witała","doi":"10.1007/s00601-025-01983-z","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss the problem of determining the strengths of short-range components in a chiral three-nucleon force (3NF) by comparing theoretical predictions with nucleon-deuteron (Nd) scattering data. A perturbative treatment of contact terms when solving the three-nucleon (3N) continuum Faddeev equation seems to be particularly well suited to dealing with variable strengths of such components in the chiral 3NF. A significant reduction of the computation time achieved in this way makes such an approach a valuable tool for fine-tuning of the 3N Hamiltonian parameters.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"66 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-025-01983-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the problem of determining the strengths of short-range components in a chiral three-nucleon force (3NF) by comparing theoretical predictions with nucleon-deuteron (Nd) scattering data. A perturbative treatment of contact terms when solving the three-nucleon (3N) continuum Faddeev equation seems to be particularly well suited to dealing with variable strengths of such components in the chiral 3NF. A significant reduction of the computation time achieved in this way makes such an approach a valuable tool for fine-tuning of the 3N Hamiltonian parameters.

具有手性力的三核子连续体的高速Faddeev计算
通过比较理论预测和核子-氘核(Nd)散射数据,讨论了确定手性三核子力(3NF)中短程分量强度的问题。在求解三核子(3N)连续体Faddeev方程时,接触项的微扰处理似乎特别适合于处理手性3NF中这些组分的可变强度。以这种方式实现的计算时间的显著减少使这种方法成为微调3N哈密顿参数的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信