Energy Equality Criteria in the Navier–Stokes Equations Involving the Pressure

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Yanqing Wang, Jiaqi Yang, Yulin Ye
{"title":"Energy Equality Criteria in the Navier–Stokes Equations Involving the Pressure","authors":"Yanqing Wang,&nbsp;Jiaqi Yang,&nbsp;Yulin Ye","doi":"10.1007/s00021-025-00917-3","DOIUrl":null,"url":null,"abstract":"<div><p>Very recently, Barker (Proc. Amer. Math. Soc. Ser. B 11: 436-451, 2024), Barker and Wang (J Differ Equ 365:379–407, 2023), and, Beirao da Veiga and Yang (J. Geom. Anal. 35: no. 1, Paper No. 15, 14 pp, 2025) applied the higher integrability of weak solutions to study the singular set and energy equality of weak solutions to the incompressible Navier–Stokes equations with supercritical assumptions, respectively. In the spirit of this and, Leslie and Shvydkoy’s work (SIAM J Math Anal 50:870–890, 2018), we present some energy equality criteria for suitable weak solutions up to the first potential blow-up time in terms of pressure, its gradient or the direction of the velocity by <span>\\(L^{p}\\)</span> bound of the incompressible Navier–Stokes equations. Furthermore, along the same lines, we establish some <span>\\(L^{p}\\)</span> estimate of the isentropic compressible Navier–Stokes equations.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00917-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Very recently, Barker (Proc. Amer. Math. Soc. Ser. B 11: 436-451, 2024), Barker and Wang (J Differ Equ 365:379–407, 2023), and, Beirao da Veiga and Yang (J. Geom. Anal. 35: no. 1, Paper No. 15, 14 pp, 2025) applied the higher integrability of weak solutions to study the singular set and energy equality of weak solutions to the incompressible Navier–Stokes equations with supercritical assumptions, respectively. In the spirit of this and, Leslie and Shvydkoy’s work (SIAM J Math Anal 50:870–890, 2018), we present some energy equality criteria for suitable weak solutions up to the first potential blow-up time in terms of pressure, its gradient or the direction of the velocity by \(L^{p}\) bound of the incompressible Navier–Stokes equations. Furthermore, along the same lines, we establish some \(L^{p}\) estimate of the isentropic compressible Navier–Stokes equations.

Abstract Image

含压力的Navier-Stokes方程中的能量相等准则
最近,巴克(美国诉讼)。数学。Soc。爵士。[J]杨建平,杨建平,张建平,张建平,等。[J] .地球物理学报,1997,18(2):436-451。肛门。35分:不。1,论文No. 15, 14 pp, 2025)应用弱解的高可积性分别研究了超临界条件下不可压缩Navier-Stokes方程弱解的奇异集和能量等式。本着这种精神,以及Leslie和Shvydkoy的工作(SIAM J Math Anal 50:870-890, 2018),我们通过不可压缩Navier-Stokes方程的\(L^{p}\)界,提出了一些关于压力,其梯度或速度方向的适合弱解的能量相等标准,直至第一次潜在爆炸时间。此外,沿着同样的思路,我们建立了一些\(L^{p}\)等熵可压缩Navier-Stokes方程的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信