V S S Venkatesh, Prabhakara Rao Ganji, Sunil Kumar, Lokeswar Patnaik
{"title":"Optimization of spark plasma sintered parameters of Al–SiC–kaolin hybrid composite using Taguchi–grey relational analysis","authors":"V S S Venkatesh, Prabhakara Rao Ganji, Sunil Kumar, Lokeswar Patnaik","doi":"10.1007/s12034-024-03378-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effects of sintering parameters on the mechanical properties and microstructure of spark plasma sintered aluminium hybrid composites reinforced with 10 wt% SiC and 4 wt% kaolin. Using Taguchi–grey relational analysis (TGRA), the sintering temperature, compaction time, and compaction pressure were optimized based on their influence on density, ultimate tensile strength (UTS), and compression strength. Experiments were designed using an L<sub>9</sub> orthogonal array, and ANOVA analysis was performed to determine the percentage contribution of each parameter. The optimal sintering conditions were found to be at a temperature of 570°C, a compaction time of 5 min, and a pressure of 20 MPa, resulting in a maximum density of 2.72 g/cc, UTS of 313 MPa, and compression strength of 379 MPa. Microstructural analysis through SEM revealed a homogeneous distribution of reinforcements at the optimal conditions, while the presence of Al<sub>2</sub>Cu intermetallic compounds was detected near the grain boundaries at non-optimal conditions. These results confirm that optimized sintering parameters significantly enhance the mechanical properties of the composite.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-024-03378-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effects of sintering parameters on the mechanical properties and microstructure of spark plasma sintered aluminium hybrid composites reinforced with 10 wt% SiC and 4 wt% kaolin. Using Taguchi–grey relational analysis (TGRA), the sintering temperature, compaction time, and compaction pressure were optimized based on their influence on density, ultimate tensile strength (UTS), and compression strength. Experiments were designed using an L9 orthogonal array, and ANOVA analysis was performed to determine the percentage contribution of each parameter. The optimal sintering conditions were found to be at a temperature of 570°C, a compaction time of 5 min, and a pressure of 20 MPa, resulting in a maximum density of 2.72 g/cc, UTS of 313 MPa, and compression strength of 379 MPa. Microstructural analysis through SEM revealed a homogeneous distribution of reinforcements at the optimal conditions, while the presence of Al2Cu intermetallic compounds was detected near the grain boundaries at non-optimal conditions. These results confirm that optimized sintering parameters significantly enhance the mechanical properties of the composite.
期刊介绍:
The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.